Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape of beverage glass influences how much people pour and drink

23.10.2003


Your eyes play tricks. And your brain makes it worse. Both teenagers and adults misjudge how much they pour into glasses. They will pour more into short wide glasses than into tall slender glasses, but perceive the opposite to be true. The delusion of shape even influences experienced bartenders, though to a lesser degree, a researcher at the University of Illinois at Urbana-Champaign has found.

How shape can alter a person’s notion of size has been widely investigated. For instance, triangles are generally perceived to be larger than squares, and horizontal shapes are seen as smaller than vertical objects of identical volume.

Yet research examining the effects of shape on how people determine how much they consume is limited, said Brian Wansink, a professor of marketing and nutritional science at Illinois. To understand the process better, Wansink examined how shape influences teenagers, adults and bartenders who pour beverages into empty glasses.



The results of his study will be published in the December issue of the Journal of Consumer Research.

Wansink, director of the Food & Brand Lab at Illinois, conducted three tests. In the first, he looked at how much juice 97 teenagers poured for themselves during breakfast at a summer camp in New Hampshire. The male and female campers, 12 to 17, with an average age of 15, had come to the camp to learn about nutrition and lose weight. They were taught about dieting and portion control in daily lectures and demonstrations.

Upon entering the cafeteria line for breakfast on the ninth day, the campers were randomly given a tall and short glass of identical capacity in which to pour their orange juice. The tall glass was slightly less than twice the height of the small glass.

The teenagers poured 76.4 percent more orange juice in the short, wide glasses than in the tall glasses (9.7 ounces versus 5.5 ounces). Although the girls poured less juice in their glasses than the boys, both groups equally overpoured in the short, wide glasses.

When questioned by Wansink’s team, however, the teenagers believed that they had poured less (7 ounces) into the short, wide glasses, and more (7.5 ounces) in the tall, slender glasses. This mistaken impression translated into drinking more juice when placed in the short glass, with 97 percent of all campers finishing the juice they had poured.

The psychologist Jean Piaget (1896-1980) believed that young children tended to be caught and fixed by the vertical dimension of a visual field. Piaget thought that as they grew up humans developed strategies to isolate and better compare vertical and horizontal dimensions.

But the tendency to overestimate the vertical dimension persisted in a second experiment conducted by Wansink. He used the same basic procedure of the teenager study to measure how much juice was poured by 89 adults eating breakfast at a camp in western Massachusetts. The group ranged from 16 to 82, with an average age of 37.

The adults poured and consumed 19.2 percent more juice in the short wide glass than in the tall slender glass (6.8 ounces versus 5.7 ounces). "These results were consistent with Piaget’s notion that older people are less likely to focus their attention merely on the vertical dimension and are better able to account for the other dimensions as well. Still age did not eliminate the elongation effect," Wansink wrote.

The adults, like the teenagers, mistakenly perceived that they had poured less into the wide glasses than into tall, slender glasses. Seventy-nine percent of the adults given the wide, short glasses underestimated how much they poured, as compared with 17 percent of those given tall glasses.

When informed of the overpouring, most of the adults expressed surprise. "We heard remarks like ’You’re kidding’ and ’Can you weigh it and show me?’ which is consistent with the general lack of awareness by participants of how much they actually poured," Wansink said in an interview.

In a final study, Wansink examined how accurately bartenders could estimate drink volumes. He asked 45 bartenders in Philadelphia to pour 1.5 ounces of liquor into drink glasses. Half the bartenders were given slender highball glasses, and the others had short tumbler glasses. Each glass held 12 ounces. The bartenders were asked to pour rum for a rum and Coke, whiskey for a whiskey on the rocks and vodka for a vodka tonic.

On average, the bartenders poured 31.3 percent more into the tumbler glass than into the highball glass (2.1 ounces versus 1.6 ounces).

Less experienced bartenders tended to overpour more (2.2 ounces in tumblers versus 1.6 ounces in highball glasses), but even bartenders with an average of nine years of experience poured 1.8 ounces in the short glass compared with 1.7 ounces in the tall glass.

There are various policy implications in these findings, according to Wansink. The tricks of the eye and brain could play havoc with dieters seeking to monitor and better control food and beverage consumption.

"Because people believe there is greater capacity in a tall, slender glass, they will pour less into it, but thinking the opposite with a short, wide glass, will keep pouring," the researcher said. Aside from overconsumption of alcohol, inadvertent overpouring of medications and over-the-counter drugs could pose a potential health risk.

Wansink’s paper is titled "Bottoms Up! The Influence of Elongation on Pouring and Consumption Volumes."

Mark Reutter | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>