Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video game used for study of human navigation

11.09.2003


Using a video game featuring a yellow taxi, virtual city and human players with electrodes embedded in their memory banks, neuroscientists at UCLA and Brandeis University have discovered how three types of brain cells interact to help people navigate the real world.

Published in the Sept. 11 edition of the peer-reviewed journal Nature, the findings offer unique information about how human memory works and present new avenues of investigation for treatment of memory disorders such as Alzheimer’s disease.

The research, which evaluated the responses of patients already attached to EEG monitors to determine the focus of epileptic seizures, also demonstrates how clinical patient settings offer unique opportunities to learn about the mind and body.



Researchers monitored signals from individual brain cells as patients played a computer game in which they explored a virtual town in a taxi. The players searched for passengers who appeared in random locations and delivered them to designated stores.

"Our findings provide the first glimpse at the visually based neural code used by humans to form spatial maps of their environment and navigate from location to location," said neurosurgeon Dr. Itzhak Fried, who is professor of neurosurgery at the David Geffen School of Medicine at UCLA and professor of psychiatry and biobehavioral sciences at UCLA Neuropsychiatric Institute. "Damage to these groups of cells can cause people to lose their ability to negotiate their environment and remember new surroundings."

"The success of this project is also an important illustration of the value of clinical patient settings in learning about the mind and body," said Fried, who has pioneered methods for studying the cellular basis of human vision and memory. "The understanding gained from such studies may eventually help future patients with brain disorders affecting the brain memory systems."

The Nature article identifies distinct cells that help humans determine 1) where they are (place); 2) what they see (view); and 3) what they are looking for (goal). The research team found "place" cells primarily in the hippocampus and "view" cells primarily in the parahippocampal region.

"Our study shows how cells in the human brain rapidly learn to respond to complex features of our environment. One of the most intriguing discoveries was that some cells respond to combinations of place, view and goal. For example, we found cells that responded to viewing an object only when that object was a goal," said Dr. Michael Kahana, associate professor at Brandeis University and an expert in the neurophysiology of human spatial navigation.

"Our results suggest that our navigation system preserves some elements of the same system used by other mammals, but also has some features unique to us because of our highly developed visual system," said first author, Arne Ekstrom, who is a doctoral student at Brandeis University.

Previous research had identified "place" cells in the hippocampus of rodents, until now perhaps the most striking example of a correlation between brain cell activity and complex behavior in mammals. These cells increase their firing rate when the animal moves across specific portions of its surroundings.

Neuroimaging studies had implicated the hippocampus and the parahippocampal region as keys to human navigation, but until now it remained unclear whether rodent-like place coding occurs in humans, or whether human navigation is driven by a different neural mechanism based on vision.

This study shows that place cells are indeed important in humans, but that other cells aid in navigation by coding for landmarks (view cells) and the intended goal (goal cells).

At UCLA, the research team recorded responses of single neurons in seven subjects who were patients with epilepsy undergoing invasive monitoring with intracranial electrodes to identify the seizure focus for potential surgical treatment.

The researchers recorded the activity of 317 neurons: 67 cells in the hippocampus, 54 in the parahippocampal region, 111 in the amygdala and 85 in the frontal lobes. To determine the nature of cellular responses while subjects performed tasks on the computer, researchers compared activity rates related to subject location in the virtual town (place), the object they viewed (view), and their goal.



Online Resources:
UCLA Division of Neurosurgery: http://neurosun.medsch.ucla.edu
UCLA Neuropsychiatric Institute: www.npi.ucla.edu
David Geffen School of Medicine: www.medsch.ucla.edu
Brandeis Computational Memory Laboratory: http://fechner.ccs.brandeis.edu
Dr. Itzhak Fried biography: http://neurosun.medsch.ucla.edu/Faculty/Fried/Faculty_Fried.html
Dr. Michael Kahana biography: http://memlab1.ccs.brandeis.edu/~kahana

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>