Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video game used for study of human navigation

11.09.2003


Using a video game featuring a yellow taxi, virtual city and human players with electrodes embedded in their memory banks, neuroscientists at UCLA and Brandeis University have discovered how three types of brain cells interact to help people navigate the real world.

Published in the Sept. 11 edition of the peer-reviewed journal Nature, the findings offer unique information about how human memory works and present new avenues of investigation for treatment of memory disorders such as Alzheimer’s disease.

The research, which evaluated the responses of patients already attached to EEG monitors to determine the focus of epileptic seizures, also demonstrates how clinical patient settings offer unique opportunities to learn about the mind and body.



Researchers monitored signals from individual brain cells as patients played a computer game in which they explored a virtual town in a taxi. The players searched for passengers who appeared in random locations and delivered them to designated stores.

"Our findings provide the first glimpse at the visually based neural code used by humans to form spatial maps of their environment and navigate from location to location," said neurosurgeon Dr. Itzhak Fried, who is professor of neurosurgery at the David Geffen School of Medicine at UCLA and professor of psychiatry and biobehavioral sciences at UCLA Neuropsychiatric Institute. "Damage to these groups of cells can cause people to lose their ability to negotiate their environment and remember new surroundings."

"The success of this project is also an important illustration of the value of clinical patient settings in learning about the mind and body," said Fried, who has pioneered methods for studying the cellular basis of human vision and memory. "The understanding gained from such studies may eventually help future patients with brain disorders affecting the brain memory systems."

The Nature article identifies distinct cells that help humans determine 1) where they are (place); 2) what they see (view); and 3) what they are looking for (goal). The research team found "place" cells primarily in the hippocampus and "view" cells primarily in the parahippocampal region.

"Our study shows how cells in the human brain rapidly learn to respond to complex features of our environment. One of the most intriguing discoveries was that some cells respond to combinations of place, view and goal. For example, we found cells that responded to viewing an object only when that object was a goal," said Dr. Michael Kahana, associate professor at Brandeis University and an expert in the neurophysiology of human spatial navigation.

"Our results suggest that our navigation system preserves some elements of the same system used by other mammals, but also has some features unique to us because of our highly developed visual system," said first author, Arne Ekstrom, who is a doctoral student at Brandeis University.

Previous research had identified "place" cells in the hippocampus of rodents, until now perhaps the most striking example of a correlation between brain cell activity and complex behavior in mammals. These cells increase their firing rate when the animal moves across specific portions of its surroundings.

Neuroimaging studies had implicated the hippocampus and the parahippocampal region as keys to human navigation, but until now it remained unclear whether rodent-like place coding occurs in humans, or whether human navigation is driven by a different neural mechanism based on vision.

This study shows that place cells are indeed important in humans, but that other cells aid in navigation by coding for landmarks (view cells) and the intended goal (goal cells).

At UCLA, the research team recorded responses of single neurons in seven subjects who were patients with epilepsy undergoing invasive monitoring with intracranial electrodes to identify the seizure focus for potential surgical treatment.

The researchers recorded the activity of 317 neurons: 67 cells in the hippocampus, 54 in the parahippocampal region, 111 in the amygdala and 85 in the frontal lobes. To determine the nature of cellular responses while subjects performed tasks on the computer, researchers compared activity rates related to subject location in the virtual town (place), the object they viewed (view), and their goal.



Online Resources:
UCLA Division of Neurosurgery: http://neurosun.medsch.ucla.edu
UCLA Neuropsychiatric Institute: www.npi.ucla.edu
David Geffen School of Medicine: www.medsch.ucla.edu
Brandeis Computational Memory Laboratory: http://fechner.ccs.brandeis.edu
Dr. Itzhak Fried biography: http://neurosun.medsch.ucla.edu/Faculty/Fried/Faculty_Fried.html
Dr. Michael Kahana biography: http://memlab1.ccs.brandeis.edu/~kahana

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>