Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed new light on speed of infant learning

26.08.2003


New study reveals knowledge of object concepts is less inborn than acquired

The question of how and when we develop our knowledge of object behavior – such as knowing that when a ball rolls behind a sofa, that it is likely to roll out the other side – is an ongoing puzzle in cognitive science. Previously, scientists had thought that infants learned to understand this concept through manual exploration. However, subsequent research indicated that infants developed an understanding of objects even before they had the ability to reach and grasp, leading scientists to postulate that object knowledge could be something babies are born with.

But new research by a team of psychologists, led by Scott Johnson of New York University, provides the first conclusive evidence that infants actually learn object concepts at a very young age – between three to six months – and that they do so through visual observation.



The research sheds new light on how soon and how quickly infants learn, as well as their ability to build an understanding of object concepts through stationary observation of the standard home environment. The findings were published in the August 25 issue of the Proceedings of the National Academy of Sciences.

"Our research provides the first conclusive documentation of how and when infants learn about object concepts, and serves as a strong argument against theories that infant knowledge in this area is innate," said Johnson. "It had previously been presumed that six-month-old infants could not have had enough time to acquire this type of knowledge, but what’s truly amazing is how rapidly they’re able to pick up these concepts."

To conduct their experiments, the researchers employed a unique eye-tracking experiment with four- and six-month-old infants, who were shown a 32-inch computer screen depicting a ball rolling horizontally back and forth. After two minutes of exposure to this trajectory, the infants were then shown a ball moving across the same screen space but its movements were temporarily obscured by an occluding box. Using a special camera that records eye movements from the center of the pupil and the cornea, data were gathered through an infrared signal tracking the various positions of the eye as the infant observed the moving ball in various stages. Of central interest was whether the infant anticipated the ball’s emergence from behind the occluder, as if she had represented the ball’s continued existence despite being out of sight.

The experiment showed that infants who were exposed to the unobscured trajectory were better able to learn to anticipate the movement of the ball when it was later obscured than infants who had not been shown the unobscured trajectory. The team also found that babies who were six months of age had already grasped the fundamentals of object concepts, suggesting that they had learned such representations from real-world experience viewing objects.

"Another implication of our findings is that infants do not necessarily benefit from stimulating toys or exercises; most babies will grasp these concepts quickly through visual observation, rather than manual object manipulation" Johnson added.

The experiment marks the most sophisticated and sensitive research conducted to date of infant learning through eye movements, and the findings mark a shift from the nativist supposition – which believed learning of object concepts to be innate – back to the developmental theories famously espoused by Piaget in the 1930s. Going forward, Johnson and his colleagues will build on these results by using event-related potentials to measure activity in the brain while the infants are learning in real time.


The PNAS paper, entitled Development of Object Concepts in Infancy: Evidence for Early Learning in an Eye Tracking Paradigm, was co-authored by Dima Amso of New York University and Jonathan A. Slemmer of Cornell University. For a copy of the paper, contact Shonna Keogan at shonna.keogan@nyu.edu or Scott Johnson at scott.johnson@nyu.edu.

Scott Johnson is an Associate Professor of Psychology at New York University, specializing in the study of visual and cognitive development, especially in infancy. He earned a bachelors degree in 1985 and a Ph.D. in 1992, both from Arizona State University. The studies were funded by grants from the National Science Foundation and the National Institute for Child Health and Human Development.

Shonna Keogan | EurekAlert!
Further information:
http://www.nyu.edu/

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>