Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain uses the same neural networks to engage in conscious and unconscious learning

05.11.2002


MRI used in a breakthrough study to explore how we gather information

How do we learn? At the same time, when learning is conscious, does the brain engage in learning based on experience? Many scientists have believed that the two processes are independent of each other. Now, new research findings published in the current edition of the Journal of Neurophysiology, suggest otherwise.
Background


Procedural learning, such as perceptual-motor sequence learning, is thought to be an obligatory consequence of practiced performance and to reflect adaptive plasticity in the neural systems mediating performance. Prior neuroimaging studies, however, have found that sequence learning accompanied with awareness (declarative learning) of the sequence activates entirely different brain regions than learning without awareness of the sequence (procedural learning). However, conflicts between imaging and behavioral studies have not resolved whether true independence exists between the two brain functions.

The Study

A breakthrough imaging study has created conditions that allow for such direct comparison of simultaneous procedural and declarative learning. A team of physiologists used an MRI to discover whether declarative learning does or does not prevent learning in procedural memory systems. They created conditions in which subjects were simultaneously learning different sequences under implicit or explicit instructions.

The authors of "Direct Comparison of Neural Systems Mediating Conscious and Unconscious Skill Learning," are Daniel B. Willingham, from the University of Virginia, Charlottesville, VA; Joanna Salidis, from Stanford University, Stanford, CA; and John D.E. Gabriel, representing both institutions. Their findings appeared in the September 2002 edition of the Journal of Neurophysiology, a journal of the American Physiological Society (APS).

Methodology

Ten males and nine females, all right-handed, participated in the study. Participants ranged in ages from 19 to 30 years old.

The serial response time task (SSRTT) paradigm circle appeared in one of four squares, arranged horizontally in the middle of the computer screen. Subjects pressed the response key (in a row of 4) with the index and middle finger of both hands, each finger mapped to a key. Each stimulus stayed on the screen for 600 ms with a 250-ms interstimulus interval. Sequences (each 12-units long) were randomly chosen for each subject from a corpus of 576 sequences, each of which followed the following constraints: equal frequency of each position, no direct repetitions, and no runs (e.g., 1234) or trills (1212) of more than three positions in a row. Stimuli were presented in blocks of 24 with a 2.2-s inter block interval. Each block started with a 520-ms fixation mark (a cross) between the middle two boxes.

Subjects were explicitly instructed that red circles denoted a repeating sequence of locations and that black circles denoted a random ordering of locations. Prior to scanning, subjects responded to a single repeating sequence that always determined the location of the red circles. This sequence constituted the "explicit-overt" condition because subjects were aware of the repeating sequence appearing in red.

Prior to scanning, subjects also responded to black circles. Unbeknownst to subjects, some black circles actually appeared in a second repeating sequence (the others appeared in random locations). This sequence constituted the "implicit" condition because subjects were unaware that there was a repeating sequence for black circles. Thus, prior to scanning, subjects simultaneously learned one sequence explicitly and another sequence implicitly.

Results
The behavioral results demonstrate that: (1) subjects were conscious of the explicit sequence; (2) unconscious of the implicit sequence; and (3) unconscious of the explicit sequence when it appeared covertly in black.

Subjects were aware of the sequence in the explicit-overt condition. Throughout scanning, they performed it faster than the random or implicit sequences. They also learned it declaratively, indicated by the fact that they selected it among the distracters (random and implicit sequences) in the postscan recognition test as a sequence they had seen before. The subjects also learned the sequence procedurally in the implicit condition. They responded faster to the implicit sequence than to the random sequences, but slower to it than to the explicit sequence.

Nevertheless, even at the end of the experiment, they failed to recognize the implicit sequence above chance. The postscan recognition test was designed to be highly sensitive to any awareness of the sequence: a graded rating scale was used so subjects could show even partial declarative knowledge. Furthermore, subjects made the recognition judgments simultaneously with performing the sequences, showing a concurrent dissociation between their procedural (RTs faster than random) and declarative knowledge (no difference from random sequences). Finally, subjects were not aware of the explicit sequence in the explicit-covert condition.

Conclusions

The behavioral and neuroimaging results from this study demonstrate that procedural learning in this paradigm is an obligatory consequence of performance. In the present paradigm, procedural memory (implicit greater than random condition) activated left prefrontal cortex, left inferior parietal cortex, and right putamen. The same regions were also active in the explicit-covert condition in which the sequence had been declaratively learned. Although the degree of activation differed in some of these structures, the neural network that enhanced performance for the implicit and for the explicit-covert conditions was virtually the same. The explicit covert activation, therefore, documents procedural modulation that occurred under conditions of declarative learning and awareness in the prescan skill learning session.

These findings suggest a more refined interpretation of the parietal cortex’s role in spatial attention in this task. Spatial attention may facilitate orienting to targets in either an externally or internally driven fashion. In the implicit and explicit covert conditions, orienting is externally driven by the appearance of the target. In sum, the role of cognitive load in procedural learning is not yet clear, and may differ across different varieties of procedural knowledge such as motor skill, classification, and classical conditioning.

The present findings indicate that when awareness and performance are well controlled, modulation occurs in the same neural network for procedural learning whether that learning is or is not accompanied by declarative knowledge. Declarative learning, however, activates many additional brain regions. This conclusion suggests an integral role for the procedural system in some skills requiring physical practice regardless of whether learning occurs with or without declarative memory.


###
Source: September 2002 edition of the Journal of Neurophysiology, a journal of the American Physiological Society (APS).

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!
Further information:
http://www.faseb.org/aps/

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>