Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard to keep a straight face

22.10.2002


It’s hard to keep a straight face, and especially difficult if you meet someone who looks angry or happy. This the conclusion drawn from experiments carried out by Ulf Dimberg, professor of psychology at Uppsala University, Sweden, and his associates. The results, which are presented in the journal Cognition and Emotion, show that we are not in full control of our facial muscles: their reactions are controlled by unconscious mechanisms.

It is well known that emotions find direct expression in our body language, gestures, and facial appearances, and these expressions of feeling are anchored in special, biologically given, so-called “affective programs.” One question facing researchers is to what extent these reactions are conscious and can be controlled or whether they are tied to unconscious mechanisms.

In his research Ulf Dimberg has studied the association of facial expressions to emotional reactions and has published acclaimed results showing that even if pictures of, say, angry or happy faces are exposed so quickly that they cannot be consciously perceived, people being tested react in the form of rapid responses in their own facial muscles that mirror the expressions they have been unconsciously exposed to.



This may be one important mechanism for “emotional contagion” to occur.

In the study now being presented in Cognition and Emotion, Ulf Dimberg and his associates have instructed volunteers in three different experiments to consciously control their facial muscles on different occasions by quickly either frowning, smiling, or not reacting at all to pictures of angry and happy faces. Movements of their facial muscles were registered with the help of so-called electromyographic technology, EMG.

The results show that the volunteers could not entirely control the reactions of their facial muscles even though they were intentionally trying to do so. On the other hand, it was easier to react to angry faces with the corrugator muscles (the frowning muscle) and to smile at happy faces. But when the instructions were just the opposite of the emotion shown in the picture, that is, to smile at angry faces and to frown at happy ones, it was more difficult to make the facial muscles obey. It was even the case that despite the fact that the volunteers consciously tried not to react at all, they could not curb their reactions in the frowning muscle when shown angry faces or in their smiling muscle when shown happy faces.

In other words, it seems to be difficult to protect us from the contagious effect of the facial expressions of other people.

These results indicate that the reactions of our facial muscles are partially controlled by unconscious mechanisms and support the theory that our emotional expressions are controlled by biologically given “affective programs.” The findings are especially interesting in that we communicate with our fellow human beings in face-to-face situations. We have all had the experience of believing we can control our bodily expressions in such a situation—that we can hang a poker face—but the results of this study suggest that we react automatically and in a predetermined way to the facial expressions of others—reactions that we cannot control at will.

Jon Hogdal | alfa
Further information:
http://www.uu.se

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>