Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hard to keep a straight face


It’s hard to keep a straight face, and especially difficult if you meet someone who looks angry or happy. This the conclusion drawn from experiments carried out by Ulf Dimberg, professor of psychology at Uppsala University, Sweden, and his associates. The results, which are presented in the journal Cognition and Emotion, show that we are not in full control of our facial muscles: their reactions are controlled by unconscious mechanisms.

It is well known that emotions find direct expression in our body language, gestures, and facial appearances, and these expressions of feeling are anchored in special, biologically given, so-called “affective programs.” One question facing researchers is to what extent these reactions are conscious and can be controlled or whether they are tied to unconscious mechanisms.

In his research Ulf Dimberg has studied the association of facial expressions to emotional reactions and has published acclaimed results showing that even if pictures of, say, angry or happy faces are exposed so quickly that they cannot be consciously perceived, people being tested react in the form of rapid responses in their own facial muscles that mirror the expressions they have been unconsciously exposed to.

This may be one important mechanism for “emotional contagion” to occur.

In the study now being presented in Cognition and Emotion, Ulf Dimberg and his associates have instructed volunteers in three different experiments to consciously control their facial muscles on different occasions by quickly either frowning, smiling, or not reacting at all to pictures of angry and happy faces. Movements of their facial muscles were registered with the help of so-called electromyographic technology, EMG.

The results show that the volunteers could not entirely control the reactions of their facial muscles even though they were intentionally trying to do so. On the other hand, it was easier to react to angry faces with the corrugator muscles (the frowning muscle) and to smile at happy faces. But when the instructions were just the opposite of the emotion shown in the picture, that is, to smile at angry faces and to frown at happy ones, it was more difficult to make the facial muscles obey. It was even the case that despite the fact that the volunteers consciously tried not to react at all, they could not curb their reactions in the frowning muscle when shown angry faces or in their smiling muscle when shown happy faces.

In other words, it seems to be difficult to protect us from the contagious effect of the facial expressions of other people.

These results indicate that the reactions of our facial muscles are partially controlled by unconscious mechanisms and support the theory that our emotional expressions are controlled by biologically given “affective programs.” The findings are especially interesting in that we communicate with our fellow human beings in face-to-face situations. We have all had the experience of believing we can control our bodily expressions in such a situation—that we can hang a poker face—but the results of this study suggest that we react automatically and in a predetermined way to the facial expressions of others—reactions that we cannot control at will.

Jon Hogdal | alfa
Further information:

More articles from Social Sciences:

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

nachricht Polluted air may pollute our morality
08.02.2018 | Association for Psychological Science

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>