Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard to keep a straight face

22.10.2002


It’s hard to keep a straight face, and especially difficult if you meet someone who looks angry or happy. This the conclusion drawn from experiments carried out by Ulf Dimberg, professor of psychology at Uppsala University, Sweden, and his associates. The results, which are presented in the journal Cognition and Emotion, show that we are not in full control of our facial muscles: their reactions are controlled by unconscious mechanisms.

It is well known that emotions find direct expression in our body language, gestures, and facial appearances, and these expressions of feeling are anchored in special, biologically given, so-called “affective programs.” One question facing researchers is to what extent these reactions are conscious and can be controlled or whether they are tied to unconscious mechanisms.

In his research Ulf Dimberg has studied the association of facial expressions to emotional reactions and has published acclaimed results showing that even if pictures of, say, angry or happy faces are exposed so quickly that they cannot be consciously perceived, people being tested react in the form of rapid responses in their own facial muscles that mirror the expressions they have been unconsciously exposed to.



This may be one important mechanism for “emotional contagion” to occur.

In the study now being presented in Cognition and Emotion, Ulf Dimberg and his associates have instructed volunteers in three different experiments to consciously control their facial muscles on different occasions by quickly either frowning, smiling, or not reacting at all to pictures of angry and happy faces. Movements of their facial muscles were registered with the help of so-called electromyographic technology, EMG.

The results show that the volunteers could not entirely control the reactions of their facial muscles even though they were intentionally trying to do so. On the other hand, it was easier to react to angry faces with the corrugator muscles (the frowning muscle) and to smile at happy faces. But when the instructions were just the opposite of the emotion shown in the picture, that is, to smile at angry faces and to frown at happy ones, it was more difficult to make the facial muscles obey. It was even the case that despite the fact that the volunteers consciously tried not to react at all, they could not curb their reactions in the frowning muscle when shown angry faces or in their smiling muscle when shown happy faces.

In other words, it seems to be difficult to protect us from the contagious effect of the facial expressions of other people.

These results indicate that the reactions of our facial muscles are partially controlled by unconscious mechanisms and support the theory that our emotional expressions are controlled by biologically given “affective programs.” The findings are especially interesting in that we communicate with our fellow human beings in face-to-face situations. We have all had the experience of believing we can control our bodily expressions in such a situation—that we can hang a poker face—but the results of this study suggest that we react automatically and in a predetermined way to the facial expressions of others—reactions that we cannot control at will.

Jon Hogdal | alfa
Further information:
http://www.uu.se

More articles from Social Sciences:

nachricht Geographers provide new insight into commuter megaregions of the US
01.12.2016 | Dartmouth College

nachricht Sustainable Development Goals lead to lower population growth
30.11.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>