Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psilocybin inhibits the processing of negative emotions in the brain

07.05.2014

When emotions are processed in a negatively biased manner in the brain, an individual is at risk to develop depression. Psilocybin, the bioactive component of the Mexican magic mushroom, seems to intervene positively in the emotion-processing mechanism. Even a small amount of the natural substance attenuates the processing of negative emotions and brightens mood as shown by UZH researchers using imaging methods.

Emotions like fear, anger, sadness, and joy enable people to adjust to their environment and react flexibly to stress and strain and are vital for cognitive processes, physiological reactions, and social behaviour. The processing of emotions is closely linked to structures in the brain, i.e. to what is known as the limbic system.

Within this system the amygdala plays a central role – above all it processes negative emotions like anxiety and fear. If the activity of the amygdala becomes unbalanced, depression and anxiety disorders may develop.

Researchers at the Psychiatric University Hospital of Zurich have now shown that psilocybin, the bioactive component in the Mexican magic mushroom, influences the amygdala, thereby weakening the processing of negative stimuli. These findings could “point the way to novel approaches to treatment” comments the lead author Rainer Krähenmann on the results which have now been published in the renowned medical journal “Biological Psychiatry”.

Psilocybin inhibits the processing of negative emotions in the amygdala

The processing of emotions can be impaired by various causes and elicit mental disorders. Elevated activity of the amygdala in response to stimuli leads to the neurons strengthening negative signals and weakening the processing of positive ones. This mechanism plays an important role in the development of depression and anxiety disorders. Psilocybin intervenes specifically in this mechanism as shown by Dr. Rainer Krähenmann's research team of the Neuropsychopharmacology and Brain Imaging Unit led by Prof. Dr. Franz Vollenweider.

Psilocybin positively influences mood in healthy individuals. In the brain, this substance stimulates specific docking sites for the messenger serotonin. The scientists therefore assumed that psilocybin exerts its mood-brightening effect via a change in the serotonin system in the limbic brain regions. This could, in fact, be demonstrated using functional magnetic resonance imaging (fMRI). “Even a moderate dose of psilocybin weakens the processing of negative stimuli by modifying amygdala activity in the limbic system as well as in other associated brain regions”, continues Krähenmann. The study clearly shows that the modulation of amygdalaactivity is directly linked to the experience of heightened mood.

Next study with depressive patients

According to Krähenmann, this observation is of major clinical importance. Depressive patients in particular react more to negative stimuli and their thoughts often revolve around negative contents. Hence, the neuropharmacologists now wish to elucidate in further studies whether psilocybin normalises the exaggerated processing of negative stimuli as seen in neuroimaging studies of depressedpatients - and may consequently lead to improved mood in these patients. .

Rainer Krähenmann considers research into novel approaches to treatment very important, because current available drugs for the treatment of depression and anxiety disorders are not effective in all patients and are often associated with unwanted side effects.


Further reading:
Rainer Kraehenmann, Katrin H. Preller, Milan Scheidegger, Thomas Pokorny, Oliver G. Bosch, Erich Seifritz, Franz X. Vollenweider,(in press). Psilocybin-Induced Decrease in Amygdala Reactivity Correlates with Enhanced Positive Mood in Healthy Volunteers. Biological Psychiatry. http://dx.doi.org/10.1016/j.biopsych.2014.04.010

Contacts:
Prof. Dr. Franz Vollenweider
Psychiatric University Hospital of Zurich
University of Zurich
Tel.: +41 44 384 24 04
Email: vollen@bli.uzh.ch

Dr. Katrin Preller
Psychiatric University Hospital of Zurich (PUKZH)
University of Zurich
Tel.: +41 44 384 26 25
Email: preller@bli.uzh.ch

Nathalie Huber
Media Relations
University of Zurich
Tel. +41 44 634 44 64
Email: nathalie.huber@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Psilocybin activity anxiety disorders emotions inhibits mechanism processes processing stimuli

More articles from Social Sciences:

nachricht Sibling differences: Later-borns choose less prestigious programs at university
14.11.2017 | Max-Planck-Institut für demografische Forschung

nachricht Visual intelligence is not the same as IQ
09.11.2017 | Vanderbilt University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>