Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psilocybin inhibits the processing of negative emotions in the brain

07.05.2014

When emotions are processed in a negatively biased manner in the brain, an individual is at risk to develop depression. Psilocybin, the bioactive component of the Mexican magic mushroom, seems to intervene positively in the emotion-processing mechanism. Even a small amount of the natural substance attenuates the processing of negative emotions and brightens mood as shown by UZH researchers using imaging methods.

Emotions like fear, anger, sadness, and joy enable people to adjust to their environment and react flexibly to stress and strain and are vital for cognitive processes, physiological reactions, and social behaviour. The processing of emotions is closely linked to structures in the brain, i.e. to what is known as the limbic system.

Within this system the amygdala plays a central role – above all it processes negative emotions like anxiety and fear. If the activity of the amygdala becomes unbalanced, depression and anxiety disorders may develop.

Researchers at the Psychiatric University Hospital of Zurich have now shown that psilocybin, the bioactive component in the Mexican magic mushroom, influences the amygdala, thereby weakening the processing of negative stimuli. These findings could “point the way to novel approaches to treatment” comments the lead author Rainer Krähenmann on the results which have now been published in the renowned medical journal “Biological Psychiatry”.

Psilocybin inhibits the processing of negative emotions in the amygdala

The processing of emotions can be impaired by various causes and elicit mental disorders. Elevated activity of the amygdala in response to stimuli leads to the neurons strengthening negative signals and weakening the processing of positive ones. This mechanism plays an important role in the development of depression and anxiety disorders. Psilocybin intervenes specifically in this mechanism as shown by Dr. Rainer Krähenmann's research team of the Neuropsychopharmacology and Brain Imaging Unit led by Prof. Dr. Franz Vollenweider.

Psilocybin positively influences mood in healthy individuals. In the brain, this substance stimulates specific docking sites for the messenger serotonin. The scientists therefore assumed that psilocybin exerts its mood-brightening effect via a change in the serotonin system in the limbic brain regions. This could, in fact, be demonstrated using functional magnetic resonance imaging (fMRI). “Even a moderate dose of psilocybin weakens the processing of negative stimuli by modifying amygdala activity in the limbic system as well as in other associated brain regions”, continues Krähenmann. The study clearly shows that the modulation of amygdalaactivity is directly linked to the experience of heightened mood.

Next study with depressive patients

According to Krähenmann, this observation is of major clinical importance. Depressive patients in particular react more to negative stimuli and their thoughts often revolve around negative contents. Hence, the neuropharmacologists now wish to elucidate in further studies whether psilocybin normalises the exaggerated processing of negative stimuli as seen in neuroimaging studies of depressedpatients - and may consequently lead to improved mood in these patients. .

Rainer Krähenmann considers research into novel approaches to treatment very important, because current available drugs for the treatment of depression and anxiety disorders are not effective in all patients and are often associated with unwanted side effects.


Further reading:
Rainer Kraehenmann, Katrin H. Preller, Milan Scheidegger, Thomas Pokorny, Oliver G. Bosch, Erich Seifritz, Franz X. Vollenweider,(in press). Psilocybin-Induced Decrease in Amygdala Reactivity Correlates with Enhanced Positive Mood in Healthy Volunteers. Biological Psychiatry. http://dx.doi.org/10.1016/j.biopsych.2014.04.010

Contacts:
Prof. Dr. Franz Vollenweider
Psychiatric University Hospital of Zurich
University of Zurich
Tel.: +41 44 384 24 04
Email: vollen@bli.uzh.ch

Dr. Katrin Preller
Psychiatric University Hospital of Zurich (PUKZH)
University of Zurich
Tel.: +41 44 384 26 25
Email: preller@bli.uzh.ch

Nathalie Huber
Media Relations
University of Zurich
Tel. +41 44 634 44 64
Email: nathalie.huber@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Psilocybin activity anxiety disorders emotions inhibits mechanism processes processing stimuli

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>