Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton researchers use mobile phones to measure happiness (Demography)

23.08.2013
Researchers at Princeton University are developing ways to use mobile phones to explore how one’s environment influences one’s sense of well-being.

In a study involving volunteers who agreed to provide information about their feelings and locations, the researchers found that cell phones can efficiently capture information that is otherwise difficult to record, given today’s on-the-go lifestyle. This is important, according to the researchers, because feelings recorded “in the moment” are likely to be more accurate than feelings jotted down after the fact.


Locations of study subjects on world map (Source: Demography)

To conduct the study, the team created an application for the Android operating system that documented each person’s location and periodically sent the question, “How happy are you?”

The investigators invited people to download the app, and over a three-week period, collected information from 270 volunteers in 13 countries who were asked to rate their happiness on a scale of 0 to 5. From the information collected, the researchers created and fine-tuned methods that could lead to a better understanding of how our environments influence emotional well-being. The study was published in the June issue of Demography.

The mobile phone method could help overcome some of the limitations that come with surveys conducted at people’s homes, according to the researchers. Census measurements tie people to specific areas — the census tracts in which they live — that are usually not the only areas that people actually frequent.

“People spend a significant amount of time outside their census tracks,” said John Palmer, a graduate student in the Woodrow Wilson School of Public and International Affairs and the paper’s lead author. “If we want to get more precise findings of contextual measurements we need to use techniques like this.”

Palmer teamed up with Thomas Espenshade, professor of sociology emeritus, and Frederic Bartumeus, a specialist in movement ecology at the Center for Advanced Studies of Blanes in Spain, along with Princeton’s Chang Chung, a statistical programmer and data archivist in the Office of Population Research; Necati Ozgencil, a former Professional Specialist at Princeton; and Kathleen Li, who earned her undergraduate degree in computer science from Princeton in 2010, to design the free, open source application for the Android platform that would record participants’ locations at various intervals based on either GPS satellites or cellular tower signals.

Though many of the volunteers lived in the United States, some were in Australia, Canada, China, France, Germany, Israel, Japan, Norway, South Korea, Spain, Sweden and the United Kingdom.

Palmer noted that the team’s focus at this stage was not on generalizable conclusions about the link between environment and happiness, but rather on learning more about the mobile phone’s capabilities for data collection. “I’d be hesitant to try to extend our substantive findings beyond those people who volunteered.” he said.

However, the team did obtain some preliminary results regarding happiness: for example, male subjects tended to describe themselves as less happy when they were further from their homes, whereas females did not demonstrate a particular trend with regards to emotions and distance.

“One of the limitations of the study is that it is not representative of all people,” Palmer said. Participants had to have smartphones and be Internet users. It is also possible that people who were happy were more likely to respond to the survey. However, Palmer said, the study demonstrates the potential for mobile phone research to reach groups of people that may be less accessible by paper surveys or interviews.

Palmer’s doctoral dissertation will expand on this research, and his adviser Marta Tienda, the Maurice P. During Professor in Demographic Studies, said she was excited to see how it will impact the academic community. “His applied research promises to redefine how social scientists understand intergroup relations on many levels,” she said.

This study involved contributions from the Center for Information Technology Policy at Princeton University, with institutional support from the National Institutes of Health Training Grant T32HD07163 and Infrastructure Grant R24HD047879.

Read the abstract.

Palmer, John R. B., Thomas J. Espenshade, Frederic Bartumeus, Chang Y. Chung, Necati Ercan Ozgencil and Kathleen Li. 2013. New Approaches to Human Mobility: Using Mobile Phones for Demographic Research. Demography 50:1105–1128. DOI 10.1007/s13524-012-0175-z

By Tara Thean, Science-Writing Intern, Office of the Dean for Research

Catherine Zandonella | EurekAlert!
Further information:
http://www.princeton.edu

Further reports about: Android-SDK Bartumeus Demographic Demography Internet user Ozgencil Princeton cell phone

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>