Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees heavy rainfall in Typhoon Roke

21.09.2011
NASA's Tropical Rainfall Measuring Mission satellite is providing forecasters with a look at the intense rainfall within Typhoon Roke as it continues to near the big island of Japan. TRMM has seen areas with the typhoon where rain is falling at 2 inches/50 mm per hour, and headed to areas of Japan already soaked since last week.

Japanese authorities are calling for evacuations as Typhoon Roke nears because of flooding concerns. According to the Australian Broadcasting Corporation, about 1.1 million people in Nagoya in central Japan's Aichi prefecture were told to evacuate, and other cities in western Japan were given the same request. Heavy rains already occurring in Aichi on Sept. 20 were causing rivers to overflow, according to NHK news. Flash flooding and landslides are of particular concern, especially in the city of Nagoya.


This 3-D image created from the TRMM satellite's data shows convective storm towers near Typhoon Roke's center of circulation reached to heights of almost 15 km (~9.3 miles). Red indicates heavy rainfall (2 inches/50 mm per hour). Credit: Credit: SSAI/NASA, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite passed over Typhoon Roke on September 18 at 1840 UTC (2:40 p.m. EDT). TRMM Precipitation Radar (PR) data showed that Roke contained several areas of heavy rainfall on the eastern side near the center of the storm. Some powerful storms near Roke's center were dropping rainfall at a rate greater than 50mm/hr (~2 inches). TRMM's Microwave Imager (TMI) also revealed that there was a large rain band between Roke and the main islands of Japan. TRMM shows that this large area of rainfall contained smaller lines of intense convective storms.

Tropical storm Roke already had a well defined circulation on September 18 at 1940 UTC (3:40 p.m. EDT) and when the TRMM satellite passed over Roke again on Sept. 19 at 1351 UTC (9:51 a.m. EDT) it had strengthened into a typhoon. TRMM captured the rainfall rates within Roke at that time. The infrared image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. It was created using TRMM's Visible and InfraRed Scanner (VIRS) instrument overlaid with rainfall derived from TRMM PR and TMI data and showed that Roke had a well defined eye, circled by intense bands of rainfall.

A 3-D image of Roke was also created from TRMM data that showed the heights of the towering clouds near Roke's eyewall using data from TRMM Precipitation Radar (PR). Some powerful storms in Roke's eye wall reached to heights of almost 15 km (~9.3 miles). Roke's eye is about 15 miles in diameter and heavy rainfall surrounds it.

Japan's NHK news reported heavy rainfall already in parts of the Miyazaki Prefecture in Kyushu, where 400 millimeters (15.75 inches) had already fallen in one day and over 1,000 millimeters (39 inches) had fallen since last Thursday, so the ground is already saturated.

On Sept. 20 at 8 a.m. EDT Typhoon Roke's maximum sustained winds were near 115 knots (132 mph/213 kmh). It was centered 450 nautical miles (833 km/517 miles) southwest of Tokyo but its cloud cover and rains extend over the southern part of the big island of Japan. It was moving to the northeast at 14 knots (16 mph/26 kmh) and generating rough seas with heights to 26 feet (8 meters).

Roke is picking up speed and is expected to make landfall on Wednesday south of Tokyo while continuing to track to the northeast.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Social Sciences:

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

nachricht Polluted air may pollute our morality
08.02.2018 | Association for Psychological Science

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>