Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA sees heavy rainfall in Typhoon Roke

NASA's Tropical Rainfall Measuring Mission satellite is providing forecasters with a look at the intense rainfall within Typhoon Roke as it continues to near the big island of Japan. TRMM has seen areas with the typhoon where rain is falling at 2 inches/50 mm per hour, and headed to areas of Japan already soaked since last week.

Japanese authorities are calling for evacuations as Typhoon Roke nears because of flooding concerns. According to the Australian Broadcasting Corporation, about 1.1 million people in Nagoya in central Japan's Aichi prefecture were told to evacuate, and other cities in western Japan were given the same request. Heavy rains already occurring in Aichi on Sept. 20 were causing rivers to overflow, according to NHK news. Flash flooding and landslides are of particular concern, especially in the city of Nagoya.

This 3-D image created from the TRMM satellite's data shows convective storm towers near Typhoon Roke's center of circulation reached to heights of almost 15 km (~9.3 miles). Red indicates heavy rainfall (2 inches/50 mm per hour). Credit: Credit: SSAI/NASA, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite passed over Typhoon Roke on September 18 at 1840 UTC (2:40 p.m. EDT). TRMM Precipitation Radar (PR) data showed that Roke contained several areas of heavy rainfall on the eastern side near the center of the storm. Some powerful storms near Roke's center were dropping rainfall at a rate greater than 50mm/hr (~2 inches). TRMM's Microwave Imager (TMI) also revealed that there was a large rain band between Roke and the main islands of Japan. TRMM shows that this large area of rainfall contained smaller lines of intense convective storms.

Tropical storm Roke already had a well defined circulation on September 18 at 1940 UTC (3:40 p.m. EDT) and when the TRMM satellite passed over Roke again on Sept. 19 at 1351 UTC (9:51 a.m. EDT) it had strengthened into a typhoon. TRMM captured the rainfall rates within Roke at that time. The infrared image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. It was created using TRMM's Visible and InfraRed Scanner (VIRS) instrument overlaid with rainfall derived from TRMM PR and TMI data and showed that Roke had a well defined eye, circled by intense bands of rainfall.

A 3-D image of Roke was also created from TRMM data that showed the heights of the towering clouds near Roke's eyewall using data from TRMM Precipitation Radar (PR). Some powerful storms in Roke's eye wall reached to heights of almost 15 km (~9.3 miles). Roke's eye is about 15 miles in diameter and heavy rainfall surrounds it.

Japan's NHK news reported heavy rainfall already in parts of the Miyazaki Prefecture in Kyushu, where 400 millimeters (15.75 inches) had already fallen in one day and over 1,000 millimeters (39 inches) had fallen since last Thursday, so the ground is already saturated.

On Sept. 20 at 8 a.m. EDT Typhoon Roke's maximum sustained winds were near 115 knots (132 mph/213 kmh). It was centered 450 nautical miles (833 km/517 miles) southwest of Tokyo but its cloud cover and rains extend over the southern part of the big island of Japan. It was moving to the northeast at 14 knots (16 mph/26 kmh) and generating rough seas with heights to 26 feet (8 meters).

Roke is picking up speed and is expected to make landfall on Wednesday south of Tokyo while continuing to track to the northeast.

Rob Gutro | EurekAlert!
Further information:

More articles from Social Sciences:

nachricht New population data provide insight on aging, migration
31.08.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht PRB projects world population rising 33 percent by 2050 to nearly 10 billion
25.08.2016 | Population Reference Bureau

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>