Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees heavy rainfall in Typhoon Roke

21.09.2011
NASA's Tropical Rainfall Measuring Mission satellite is providing forecasters with a look at the intense rainfall within Typhoon Roke as it continues to near the big island of Japan. TRMM has seen areas with the typhoon where rain is falling at 2 inches/50 mm per hour, and headed to areas of Japan already soaked since last week.

Japanese authorities are calling for evacuations as Typhoon Roke nears because of flooding concerns. According to the Australian Broadcasting Corporation, about 1.1 million people in Nagoya in central Japan's Aichi prefecture were told to evacuate, and other cities in western Japan were given the same request. Heavy rains already occurring in Aichi on Sept. 20 were causing rivers to overflow, according to NHK news. Flash flooding and landslides are of particular concern, especially in the city of Nagoya.


This 3-D image created from the TRMM satellite's data shows convective storm towers near Typhoon Roke's center of circulation reached to heights of almost 15 km (~9.3 miles). Red indicates heavy rainfall (2 inches/50 mm per hour). Credit: Credit: SSAI/NASA, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite passed over Typhoon Roke on September 18 at 1840 UTC (2:40 p.m. EDT). TRMM Precipitation Radar (PR) data showed that Roke contained several areas of heavy rainfall on the eastern side near the center of the storm. Some powerful storms near Roke's center were dropping rainfall at a rate greater than 50mm/hr (~2 inches). TRMM's Microwave Imager (TMI) also revealed that there was a large rain band between Roke and the main islands of Japan. TRMM shows that this large area of rainfall contained smaller lines of intense convective storms.

Tropical storm Roke already had a well defined circulation on September 18 at 1940 UTC (3:40 p.m. EDT) and when the TRMM satellite passed over Roke again on Sept. 19 at 1351 UTC (9:51 a.m. EDT) it had strengthened into a typhoon. TRMM captured the rainfall rates within Roke at that time. The infrared image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. It was created using TRMM's Visible and InfraRed Scanner (VIRS) instrument overlaid with rainfall derived from TRMM PR and TMI data and showed that Roke had a well defined eye, circled by intense bands of rainfall.

A 3-D image of Roke was also created from TRMM data that showed the heights of the towering clouds near Roke's eyewall using data from TRMM Precipitation Radar (PR). Some powerful storms in Roke's eye wall reached to heights of almost 15 km (~9.3 miles). Roke's eye is about 15 miles in diameter and heavy rainfall surrounds it.

Japan's NHK news reported heavy rainfall already in parts of the Miyazaki Prefecture in Kyushu, where 400 millimeters (15.75 inches) had already fallen in one day and over 1,000 millimeters (39 inches) had fallen since last Thursday, so the ground is already saturated.

On Sept. 20 at 8 a.m. EDT Typhoon Roke's maximum sustained winds were near 115 knots (132 mph/213 kmh). It was centered 450 nautical miles (833 km/517 miles) southwest of Tokyo but its cloud cover and rains extend over the southern part of the big island of Japan. It was moving to the northeast at 14 knots (16 mph/26 kmh) and generating rough seas with heights to 26 feet (8 meters).

Roke is picking up speed and is expected to make landfall on Wednesday south of Tokyo while continuing to track to the northeast.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>