Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Language vitality barometer toolkit for detecting endangered languages now freely available online

11.02.2014
Tools and database of the EU project ELDIA now generally accessible / Wake-up call to policymakers to help save endangered languages

The EuLaViBar language vitality barometer is a tool that can be used to determine the extent to which a language is threatened with extinction.

Academics from eight universities in six European countries developed the barometer during a three-and-a-half year project sponsored by the European Union. It is now available to anybody interested online at www.eldia-project.org/index.php/eulavibar.

"We originally developed the barometer for the purpose of analyzing Finno-Ugric minority languages, some of which are very much in danger of dying out," explained Professor Anneli Sarhimaa of Johannes Gutenberg University Mainz (JGU), who headed up the study. "However, the language vitality barometer can generally be applied to all languages threatened with extinction."

The barometer is designed to help policymakers and stakeholders identify languages that are at particular risk. The information provided by the barometer is based on empirical data extracted from surveys. Once particularly critical linguistic domains have been identified, it should then be possible to put in place targeted measures and use available resources efficiently.

The European Union supplied EUR 2.7 million to fund the European Language Diversity for All (ELIDIA) project between 2010 and 2013. The project consortium welcomes scholars from around the world to use the ELDIA database at Mainz University for their own academic research on endangered and revitalizing languages. Information about the database is available online at www.eldia-project.org/index.php/eldiadata.

Illustration:
http://www.uni-mainz.de/bilder_presse/05_english_sneb_eldia_02.jpg
The vitality status of Karelian in Finland according to the EuLaViBar: The chart indicates that the status of the language here is very worrying. In terms of the main parameters "Capacity" and "Language Products," Karelian in Finland is critically endangered while in terms of "Opportunity" and "Desire" the language is seriously endangered. [Key: Language usage (green), Education (red), Legislation (yellow), Media (blue)]

source: © www.eldia-project.org

Futher information:
Professor Dr. Anneli Sarhimaa
Northern European and Baltic Languages and Cultures (SNEB)
Department of English and Linguistics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23081 or 39-23080
fax +49 6131 39-23973
e-mail: sarhimaa@uni-mainz.de
http://www.sneb.uni-mainz.de/univ-prof-dr-anneli-sarhimaa/
Weitere Informationen:
http://www.eldia-project.org/
- The ELDIA Project
https://www.facebook.com/pages/ELDIA-European-Language-Diversity-for-All/109989592360850

- ELDIA

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>