Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How network dynamics shape collaboration

25.08.2015

From the Earth System to the human brain, from families to Facebook – complex networks can be found everywhere around us. Describing the structure of socio-economic systems, the analysis of complex networks can improve our understanding of interactions and transformations within our society.

A team of researchers now used this approach to explore the development of large coalitions in a network of acquaintances, when cooperation promises the highest economic or social advantages. For the first time, they focused on how social relations interact with this process.


Full cooperation is most probable when the network adapts only slowly to new coalition structures. (Detail of Figure 2 in the study) Graphics: PIK

Published in the journal Scientific Reports of the renowned Nature group, their results show that full cooperation is most probable when the network adapts only slowly to new coalition structures. If the network adapts faster than new coalitions form, its fragmentation might prevent the formation of large-scale coalitions.

“Cooperation is critical when it comes to a common pool resource,” says lead author Sabine Auer of the Potsdam Institute for Climate Impact Research (PIK). Man-made climate change and the necessary transition to a low-carbon economy as one of the major current economic challenges are examples of changes which are closely related to several common pool resources like the atmosphere and renewable energy sources.

“As a more simple example, imagine a meadow used by several farmers – a common agreement on how to use this renewable resource in a sustainable way would be most profitable for the group at a whole in the long-term, so a trustworthy grand coalition would be the best option. However, our study shows that if some farmers quickly form a coalition before trust within the whole network is established, this might alienate the others - and the lost social tie may later prevent them to join the coalition,” Auer explains.

+++“Keep up good relations with your competitors so they might become your partners later”+++

Even though there clearly is a feedback loop of network structure influencing behavior and at the same time behavior influencing the network adaptation, so far the underlying social relations in a network were disregarded in models of coalition formation.

“Now we were able to investigate the role of trust and social relations for coalitions of multiple potential partners for the first time and found that full cooperation is most probable when the acquaintance network adapts only slowly to the coalition structure,” Auer says. “The relative speed of changes in social feedback loops seems to be crucial for transformation processes”.

“We provide a new methodological approach that can be used in socio-economic environments where cooperation promises economic or social advantages – this is an important step towards a better understanding of the mechanisms of collaboration,” says co-author Jobst Heitzig. It can be applied to study diverse subjects from firm size distribution to fish cohorts or political parties. “One common message is clear from the model: Keep up good relations with your competitors so they might become your partners later!”

+++Statistical physics used to study socio-economic systems+++

“Statistical physics provides a powerful means to conceptually study mechanisms of socio-economic systems and their associated transformations, such as market restructuring, social upheavals or even revolutions, says co-author Jürgen Kurths, chair of Research Domain Transdisciplinary Concepts & Methods” at the Potsdam Institute.

The study was carried out within the framework of PIK’s project “Copan – Coevolutionary Pathways,” that aims at developing conceptual models which consolidate natural and socio-economic subsystems of the Earth system and their relationship to each other. “The formation and breakdown of coalitions and the emergence of transitions is a major modelling challenge, which our study advanced to a new level of complexity,” says Kurths.

Article: Auer, S., Heitzig, J., Kornek, U., Schöll, E., Kurths, J. (2015): The Dynamics of Coalition Formation on Complex Networks. Nature Scientific Reports [DOI: 10.1038/srep13386]

Weblink to the article: www.nature.com/articles/srep13386

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Social Sciences:

nachricht Geographers provide new insight into commuter megaregions of the US
01.12.2016 | Dartmouth College

nachricht Sustainable Development Goals lead to lower population growth
30.11.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>