Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How network dynamics shape collaboration

25.08.2015

From the Earth System to the human brain, from families to Facebook – complex networks can be found everywhere around us. Describing the structure of socio-economic systems, the analysis of complex networks can improve our understanding of interactions and transformations within our society.

A team of researchers now used this approach to explore the development of large coalitions in a network of acquaintances, when cooperation promises the highest economic or social advantages. For the first time, they focused on how social relations interact with this process.


Full cooperation is most probable when the network adapts only slowly to new coalition structures. (Detail of Figure 2 in the study) Graphics: PIK

Published in the journal Scientific Reports of the renowned Nature group, their results show that full cooperation is most probable when the network adapts only slowly to new coalition structures. If the network adapts faster than new coalitions form, its fragmentation might prevent the formation of large-scale coalitions.

“Cooperation is critical when it comes to a common pool resource,” says lead author Sabine Auer of the Potsdam Institute for Climate Impact Research (PIK). Man-made climate change and the necessary transition to a low-carbon economy as one of the major current economic challenges are examples of changes which are closely related to several common pool resources like the atmosphere and renewable energy sources.

“As a more simple example, imagine a meadow used by several farmers – a common agreement on how to use this renewable resource in a sustainable way would be most profitable for the group at a whole in the long-term, so a trustworthy grand coalition would be the best option. However, our study shows that if some farmers quickly form a coalition before trust within the whole network is established, this might alienate the others - and the lost social tie may later prevent them to join the coalition,” Auer explains.

+++“Keep up good relations with your competitors so they might become your partners later”+++

Even though there clearly is a feedback loop of network structure influencing behavior and at the same time behavior influencing the network adaptation, so far the underlying social relations in a network were disregarded in models of coalition formation.

“Now we were able to investigate the role of trust and social relations for coalitions of multiple potential partners for the first time and found that full cooperation is most probable when the acquaintance network adapts only slowly to the coalition structure,” Auer says. “The relative speed of changes in social feedback loops seems to be crucial for transformation processes”.

“We provide a new methodological approach that can be used in socio-economic environments where cooperation promises economic or social advantages – this is an important step towards a better understanding of the mechanisms of collaboration,” says co-author Jobst Heitzig. It can be applied to study diverse subjects from firm size distribution to fish cohorts or political parties. “One common message is clear from the model: Keep up good relations with your competitors so they might become your partners later!”

+++Statistical physics used to study socio-economic systems+++

“Statistical physics provides a powerful means to conceptually study mechanisms of socio-economic systems and their associated transformations, such as market restructuring, social upheavals or even revolutions, says co-author Jürgen Kurths, chair of Research Domain Transdisciplinary Concepts & Methods” at the Potsdam Institute.

The study was carried out within the framework of PIK’s project “Copan – Coevolutionary Pathways,” that aims at developing conceptual models which consolidate natural and socio-economic subsystems of the Earth system and their relationship to each other. “The formation and breakdown of coalitions and the emergence of transitions is a major modelling challenge, which our study advanced to a new level of complexity,” says Kurths.

Article: Auer, S., Heitzig, J., Kornek, U., Schöll, E., Kurths, J. (2015): The Dynamics of Coalition Formation on Complex Networks. Nature Scientific Reports [DOI: 10.1038/srep13386]

Weblink to the article: www.nature.com/articles/srep13386

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>