Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How network dynamics shape collaboration

25.08.2015

From the Earth System to the human brain, from families to Facebook – complex networks can be found everywhere around us. Describing the structure of socio-economic systems, the analysis of complex networks can improve our understanding of interactions and transformations within our society.

A team of researchers now used this approach to explore the development of large coalitions in a network of acquaintances, when cooperation promises the highest economic or social advantages. For the first time, they focused on how social relations interact with this process.


Full cooperation is most probable when the network adapts only slowly to new coalition structures. (Detail of Figure 2 in the study) Graphics: PIK

Published in the journal Scientific Reports of the renowned Nature group, their results show that full cooperation is most probable when the network adapts only slowly to new coalition structures. If the network adapts faster than new coalitions form, its fragmentation might prevent the formation of large-scale coalitions.

“Cooperation is critical when it comes to a common pool resource,” says lead author Sabine Auer of the Potsdam Institute for Climate Impact Research (PIK). Man-made climate change and the necessary transition to a low-carbon economy as one of the major current economic challenges are examples of changes which are closely related to several common pool resources like the atmosphere and renewable energy sources.

“As a more simple example, imagine a meadow used by several farmers – a common agreement on how to use this renewable resource in a sustainable way would be most profitable for the group at a whole in the long-term, so a trustworthy grand coalition would be the best option. However, our study shows that if some farmers quickly form a coalition before trust within the whole network is established, this might alienate the others - and the lost social tie may later prevent them to join the coalition,” Auer explains.

+++“Keep up good relations with your competitors so they might become your partners later”+++

Even though there clearly is a feedback loop of network structure influencing behavior and at the same time behavior influencing the network adaptation, so far the underlying social relations in a network were disregarded in models of coalition formation.

“Now we were able to investigate the role of trust and social relations for coalitions of multiple potential partners for the first time and found that full cooperation is most probable when the acquaintance network adapts only slowly to the coalition structure,” Auer says. “The relative speed of changes in social feedback loops seems to be crucial for transformation processes”.

“We provide a new methodological approach that can be used in socio-economic environments where cooperation promises economic or social advantages – this is an important step towards a better understanding of the mechanisms of collaboration,” says co-author Jobst Heitzig. It can be applied to study diverse subjects from firm size distribution to fish cohorts or political parties. “One common message is clear from the model: Keep up good relations with your competitors so they might become your partners later!”

+++Statistical physics used to study socio-economic systems+++

“Statistical physics provides a powerful means to conceptually study mechanisms of socio-economic systems and their associated transformations, such as market restructuring, social upheavals or even revolutions, says co-author Jürgen Kurths, chair of Research Domain Transdisciplinary Concepts & Methods” at the Potsdam Institute.

The study was carried out within the framework of PIK’s project “Copan – Coevolutionary Pathways,” that aims at developing conceptual models which consolidate natural and socio-economic subsystems of the Earth system and their relationship to each other. “The formation and breakdown of coalitions and the emergence of transitions is a major modelling challenge, which our study advanced to a new level of complexity,” says Kurths.

Article: Auer, S., Heitzig, J., Kornek, U., Schöll, E., Kurths, J. (2015): The Dynamics of Coalition Formation on Complex Networks. Nature Scientific Reports [DOI: 10.1038/srep13386]

Weblink to the article: www.nature.com/articles/srep13386

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>