Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Formula Predicts How People Will Migrate in Coming Decades

01.10.2008
Scientists at Rockefeller University, with assistance from the United Nations, have developed a predictive model of worldwide population shifts that they say will provide better estimates of migration across international boundaries.

Nearly 200 million people now live outside their country of birth. But the patterns of migration that got them there have proven difficult to project.

Now scientists at Rockefeller University, with assistance from the United Nations, have developed a predictive model of worldwide population shifts that they say will provide better estimates of migration across international boundaries. Because countries use population projections to estimate local needs for jobs, schools, housing and health care, a more precise formula to describe how people move could lead to better use of resources and improved economic conditions.

The model, published in the Sept. 29 online Early Edition of Proceedings of the National Academy of Sciences, improves existing ways to estimate population movement between individual countries and is being considered by the United Nations as an approach all nations can utilize, says the study's lead investigator, Joel E. Cohen, Abby Rockefeller Mauzé Professor and head of the Laboratory of Populations. "From year to year, it has been difficult to calculate how the world's population ebbs and flows between countries other than guessing that this year will resemble last year. But that is critical information in so many ways, and this model offers a new and unified approach that, we hope, will be of global benefit," Cohen says.

Formulas used until now were so flawed that they sometimes estimated that net emigration away from a particular country was greater than the country's original population, Cohen says, with a result that a nation was left with a predicted population of fewer than zero. "This has been a very inexact science," Cohen says.

To minimize such problems, Cohen and his colleagues used 43,653 reports from 11 countries of migration, which included 228 origins and 195 destinations reported from 1960 to 2004. The data on population and migration were provided by coauthor Marta Roig of the United Nations' Population Division. Cohen then added other geographical data. He and the other coauthors, Daniel Reuman, a former postdoctoral researcher at Rockefeller who is now at Imperial College London, and Cai GoGwilt, a Massachusetts Institute of Technology undergraduate who was a summer intern at Rockefeller, determined how to weight each variable.

The variables they selected were the populations and areas of countries receiving and sending people, the trend over time and the distance between locations. They then added "indicator" variables to account for differences in how nations report their data and used off-the-shelf computer software to estimate coefficients of a mathematical model of migration patterns.

"Our model accounts for roughly 60 percent of the variation in annual numbers of migrants from any country or region to any other, based on historical data, and nothing has come close to this," says Cohen. "This is only a first step, but it is a step that had not been made before. I hope this stimulates countries to come together and improve the standards by which they collect migration data. The data available to us are incomplete, inconsistent and in some cases contradictory. Better data in the future will help to improve models like this."

Understanding international migration has become more important in recent years because fertility worldwide has dropped, Cohen says. "That means the relative importance of migration as a factor in population change is accentuated, particularly for the countries that are the big receivers." For example, significant numbers of workers leave Southeast Asia for work in the Middle East, and migration continues from Turkey to Germany, Pakistan to England and Mexico to the United States.

The study was funded by a National Science Foundation award that supports Cohen's laboratory.

Joseph Bonner | Newswise Science News
Further information:
http://www.rockefeller.edu

Further reports about: Migrate Migration Population worldwide population

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>