Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forming consensus in social networks

04.09.2014

Researchers at the University of Miami and the University of Notre Dame have developed a computational model that attempts to capture the process that individuals use within social networks to reach consensus

Social networks have become a dominant force in society. Family, friends, peers, community leaders and media communicators are all part of people's social networks. Individuals within a network may have different opinions on important issues, but it's their collective actions that determine the path society takes.

To understand the process through which we operate as a group, and to explain why we do what we do, researchers have developed a novel computational model and the corresponding conditions for reaching consensus in a wide range of situations. The findings are published in the August 2014 issue on Signal Processing for Social Networks of the IEEE Journal of Selected Topics in Signal Processing.

"We wanted to provide a new method for studying the exchange of opinions and evidence in networks," said Kamal Premaratne, professor of electrical and computer engineering, at the University of Miami (UM) and principal investigator of the study. "The new model helps us understand the collective behavior of adaptive agents--people, sensors, data bases or abstract entities--by analyzing communication patterns that are characteristic of social networks."

The model addresses some fundamental questions: what is a good way to model opinions and how these opinions are updated, and when is consensus reached.

One key feature of the new model is its capacity to handle the uncertainties associated with soft data (such as opinions of people) in combination with hard data (facts and numbers).

"Human-generated opinions are more nuanced than physical data and require rich models to capture them," said Manohar N. Murthi, associate professor of electrical and computer engineering at UM and co-author of the study. "Our study takes into account the difficulties associated with the unstructured nature of the network," he adds. "By using a new 'belief updating mechanism,' our work establishes the conditions under which agents can reach a consensus, even in the presence of these difficulties."

The agents exchange and revise their beliefs through their interaction with other agents. The interaction is usually local, in the sense that only neighboring agents in the network exchange information, for the purpose of updating one's belief or opinion. The goal is for the group of agents in a network to arrive at a consensus that is somehow 'similar' to the ground truth - what has been confirmed by the gathering of objective data.

In previous works, consensus achieved by the agents was completely dependent on how agents update their beliefs. In other words, depending on the updating scheme being utilized, one can get different consensus states. The consensus in the current model is more rational or meaningful.

"In our work, the consensus is consistent with a reliable estimate of the ground truth, if it is available," Premaratne said. "This consistency is very important, because it allows us to estimate how credible each agent is."

According to the model, if the consensus opinion is closer to an agent's opinion, then one can say that this agent is more credible. On the other hand, if the consensus opinion is very different from an agent's opinion, then it can be inferred that this agent is less credible.

"The fact that the same strategy can be used even in the absence of a ground truth is of immense importance because, in practice, we often have to determine if an agent is credible or not when we don't have knowledge of the ground truth," Murthi said.

In the future, the researchers would like to expand their model to include the formation of opinion clusters, where each cluster of agents share similar opinions. Clustering can be seen in the emergence of extremism, minority opinion spreading, the appearance of political affiliations, or affinity for a particular product, for example.

###

The title of the study is "Convergence Analysis of Iterated Belief Revision in Complex Fusion Environments." The co-authors are Thanuka L. Wickramarathne, research assistant professor of computer science and engineering; and Nitesh V. Chawla, associate professor of computer science and engineering, both at the University of Notre Dame.

This work is part of a larger interdisciplinary collaborative research project funded by the HSCB (Human Social, Cultural, and Behavioral) area of the Office of Naval Research.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

Annette Gallagher | Eurek Alert!
Further information:
http://www.miami.edu/

Further reports about: Social Social Networks capacity conditions evidence mechanism networks signal processing

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>