Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual Radar Storm Analysis Technique Works Even with One

30.07.2013
Scientists may be able to better study how supercell thunderstorms work by using the data from just one Doppler radar unit and an analysis technique called synthetic dual-Doppler (SDD) that normally requires two, according to research done by a doctoral candidate at The University of Alabama in Huntsville (UAH).

Student Todd Murphy teamed with UAH atmospheric science professor Dr. Kevin Knupp to make one of the first comprehensive analyses of cold season supercells using only one Doppler radar with the application of the SDD analysis technique. The SDD technique allows researchers to examine the winds inside supercells in three dimensions.

Doppler radar works by sending a beam of electronic radiation that is tuned to a precise frequency at an object. The beam is then reflected back to a receiver. By using a phenomenon known as the Doppler effect, the frequency of the beam when it went out and the altered frequency of it when it returns can be used to calculate the movement of the object.

When developed in the late 1960s and refined in the 1970s, the SDD analysis used one such radar unit for the data needed to provide insights into the dynamic and thermodynamic quantities of a storm and measure wind speed and direction.

However, the ability of SDD to peer inside super-cells can be limited because the storms first must be close enough to radar facilities to be detectable.

“This is certainly a technique that will only work in certain cases,” Murphy said. He has personally experienced the limitations when attempting to position UAH’s Mobile Alabama X-band (MAX) truck to collect data on approaching storms.

“In the Southeast, with our topography and the trees we have, it is really difficult to position MAX.”

Data from the widespread outbreak of cold season supercell storms on Super Tuesday in 2008 provided an opportunity for Murphy and Dr. Knupp to examine using the SDD technique with readings from single Doppler radar facilities.

Nighttime supercells on Super Tuesday 2008 were so widespread that in Tennessee, one in near Memphis and one near Nashville were close enough to single Doppler radar facilities for information about the storms to be obtained. Murphy and Dr. Knupp subjected the data from those single radar facilities to the SDD analysis technique.

“We were trying to find a new way to look at storms,” said Murphy. “We feel like with this research, we proved that you can use just one radar source and the synthetic dual-Doppler radar technique to retrieve the winds in supercell thunderstorms.

“The SDD technique allows us to retrieve the three-dimensional wind components of a storm,” he said. “It provides us with a lot more insight into what makes up a storm, including data on the vorticity (spin) of a supercell.”

Researchers can see what’s going on inside storms from about 500 meters off the ground and higher, so SDD provides information on the mid- and upper-level factors that are in turn spawning tornadoes on the ground.

“What we are really looking at is the mesocyclone, or the large movements occurring in the storm,” Murphy said. Mesocyclones are huge vortexes of air moving around a vertical axis within a thunderstorm.

Because the radar got better data from the Nashville storm, it was the primary focus of the study. Its structure was very similar to low-top supercells that commonly are spawned as bands surrounding hurricanes, Murphy said.

Murphy’s data also affirmed the importance of strong rear flank downdraft (RFD) in the formation of tornadoes. RFDs are the downdraft winds that occur in the trailing portion of the comma-like hook that is typical of storms that spawn tornadoes.

“Some previous research had shown RFD to be important in tornadogenesis,” Murphy said. “The findings here do agree with the previous research that RFD is important.”

Next, Murphy plans to publish a paper that is a large-scale view of the contributing factors of the Super Tuesday 2008 event as a whole.

Dr. Kevin Knupp
kevin.knupp@uah.edu
256-961-7762
OR
Todd Murphy
todd.murphy@uah.edu
OR
Jim Steele
256-824-2772
jim.steele@uah.edu

Dr. Kevin Knupp | Newswise
Further information:
http://www.uah.edu

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>