Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual Radar Storm Analysis Technique Works Even with One

30.07.2013
Scientists may be able to better study how supercell thunderstorms work by using the data from just one Doppler radar unit and an analysis technique called synthetic dual-Doppler (SDD) that normally requires two, according to research done by a doctoral candidate at The University of Alabama in Huntsville (UAH).

Student Todd Murphy teamed with UAH atmospheric science professor Dr. Kevin Knupp to make one of the first comprehensive analyses of cold season supercells using only one Doppler radar with the application of the SDD analysis technique. The SDD technique allows researchers to examine the winds inside supercells in three dimensions.

Doppler radar works by sending a beam of electronic radiation that is tuned to a precise frequency at an object. The beam is then reflected back to a receiver. By using a phenomenon known as the Doppler effect, the frequency of the beam when it went out and the altered frequency of it when it returns can be used to calculate the movement of the object.

When developed in the late 1960s and refined in the 1970s, the SDD analysis used one such radar unit for the data needed to provide insights into the dynamic and thermodynamic quantities of a storm and measure wind speed and direction.

However, the ability of SDD to peer inside super-cells can be limited because the storms first must be close enough to radar facilities to be detectable.

“This is certainly a technique that will only work in certain cases,” Murphy said. He has personally experienced the limitations when attempting to position UAH’s Mobile Alabama X-band (MAX) truck to collect data on approaching storms.

“In the Southeast, with our topography and the trees we have, it is really difficult to position MAX.”

Data from the widespread outbreak of cold season supercell storms on Super Tuesday in 2008 provided an opportunity for Murphy and Dr. Knupp to examine using the SDD technique with readings from single Doppler radar facilities.

Nighttime supercells on Super Tuesday 2008 were so widespread that in Tennessee, one in near Memphis and one near Nashville were close enough to single Doppler radar facilities for information about the storms to be obtained. Murphy and Dr. Knupp subjected the data from those single radar facilities to the SDD analysis technique.

“We were trying to find a new way to look at storms,” said Murphy. “We feel like with this research, we proved that you can use just one radar source and the synthetic dual-Doppler radar technique to retrieve the winds in supercell thunderstorms.

“The SDD technique allows us to retrieve the three-dimensional wind components of a storm,” he said. “It provides us with a lot more insight into what makes up a storm, including data on the vorticity (spin) of a supercell.”

Researchers can see what’s going on inside storms from about 500 meters off the ground and higher, so SDD provides information on the mid- and upper-level factors that are in turn spawning tornadoes on the ground.

“What we are really looking at is the mesocyclone, or the large movements occurring in the storm,” Murphy said. Mesocyclones are huge vortexes of air moving around a vertical axis within a thunderstorm.

Because the radar got better data from the Nashville storm, it was the primary focus of the study. Its structure was very similar to low-top supercells that commonly are spawned as bands surrounding hurricanes, Murphy said.

Murphy’s data also affirmed the importance of strong rear flank downdraft (RFD) in the formation of tornadoes. RFDs are the downdraft winds that occur in the trailing portion of the comma-like hook that is typical of storms that spawn tornadoes.

“Some previous research had shown RFD to be important in tornadogenesis,” Murphy said. “The findings here do agree with the previous research that RFD is important.”

Next, Murphy plans to publish a paper that is a large-scale view of the contributing factors of the Super Tuesday 2008 event as a whole.

Dr. Kevin Knupp
kevin.knupp@uah.edu
256-961-7762
OR
Todd Murphy
todd.murphy@uah.edu
OR
Jim Steele
256-824-2772
jim.steele@uah.edu

Dr. Kevin Knupp | Newswise
Further information:
http://www.uah.edu

More articles from Social Sciences:

nachricht Geographers provide new insight into commuter megaregions of the US
01.12.2016 | Dartmouth College

nachricht Sustainable Development Goals lead to lower population growth
30.11.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>