Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The anti-crisis project: Thinking our way to a better future

02.08.2010
Just a few days ago, at the Love Parade dance and music festival in Duisburg, Germany, 21 people were trampled to death in a human stampede. Apparently, the responsible decision-makers did not see the problem looming before the event.

But couldn’t we foresee at least some of the disasters before they strike?

In fact, scientists say, with the right kind of effort, we could do much better, not only with crowd disasters, but also in managing traffic problems, impending energy shortages, persisting financial and economic instabilities, climate change, and many other challenges. An ambitious new scientific effort now aims to transform our ability to understand and manage mutually entangled social, economic, and technological systems through an Apollo-like project uniting scientists across Europe. The FuturICT initiative will exploit the revolution in modern computation and information technologies to build an immeasurably more powerful science of human systems and their interaction with the global environment.

The project is being coordinated by a team of scientists led by physicist, traffic scientist, and sociologist Dirk Helbing of ETH Zurich. "It’s time to explore social life on Earth, and everything it relates to, in the same ambitious way that we have spent the last century or more exploring our physical world," he says. Their proposal, submitted for the European Commission's Flagship Programme, aims to assemble expertise across the whole spectrum of science — from physics, computer science, environmental science and economics through psychology, ecology and sociology — and, by developing supercomputing facilities and large-scale laboratories, to build a much more powerful human science on which to base future policies.

"This may well be one of the most profound scientific initiatives of the 21st century," says Jeffrey Johnson, President of the European Complex Systems Society.

The information revolution facilitates a better understanding of society

In the past decade or so, modern information and communication technologies—especially through the Internet, World Wide Web and mobile communications—has begun transforming social science into a far more quantitative, and even predictive, science. Social scientists have also learned to augment the power of their minds with computing technology, building models of social systems—a community, a company, a market, etc.—in which computer agents act like people, make decisions as people do, learn and adapt.

With funding of approximately EUR 100 million per year for ten years, the FuturIcT project aims to build on these advances to establish three systems on an unprecedented scale:

A Living Earth Visualator. A super-computing platform capable of simulating and visualizing the world at the global scale, focusing on the interaction between technical, social and economic systems as well as their physical and biological environment. This will provide a setting for the exploration of whole-Earth dynamics and policies designed to manage them.

Crisis Observatories. Laboratories running massive data mining and computing systems to detect possible crises, such as bubbles or crashes in financial or housing markets, to gain advance warning of critical shortages in, say, oil, water, or food, or to develop ways to identify risks of wars and social unrest, disease spreading, or environmental instabilities.

Knowledge Accelerator: A concept bringing together key representatives from a wide range of scientific disciplines, from businesses and other organizations, and from governments to identify important social or technological innovations early on and to devise ambitious, practical programmes to further their wide social benefit.

The project envisions these three components working together to move from the early identification of a problem or opportunity through its analysis to systemic designs and the visualization of the impact of policy measures by means of Decision Arenas. For example, a Crisis Observatory might gather and analyse data from stock markets, banks and other businesses, inflation, the housing and labour markets, resource availability and so on, and carry out massive real-time data mining and computational simulation to identify advance warning signs of potential financial or economic crises. Such information would go to experts and decision-makers who would further investigate the potential problem in large-scale computer simulations in the Living Earth Visualator and explore the likely effectiveness -- and also the possible unintended consequences -- of proposed policies. In the case of a looming market crash, for example, they might test the likely consequences of a ban on naked "short-selling" or other speculative trading practices, or anticipate how market function would likely change, if authorities stepped in to limit leverage. Computer experiments in the simulated economy might discover effective but non-obvious policy steps that no individual would ever have imagined.

Including the human component

People, of course, don't always respond the way policy makers intend. Hence, the more promising policies identified through simulations could be further tested in massive online games in which real people would participate in the experiment. Imagine, for example, 10 million people playing within virtual worlds mimicking the international financial system and having real incentives to act realistically in their roles as governments, central banks, businesses or labour groups within Europe. Such a "parallel world" system -- akin to Second Life -- would offer an unprecedented means for foreseeing and comparing the possible outcomes of policy decisions. For example, what's the likely outcome for the European economy, if the European Union backs up Greece and the other financially troubled nations? What would change if, instead, these countries would again introduce independent currencies?

After this testing stage, the results of the different computer scenarios and parallel world experiments would be presented to decision-makers in a Decision Arena -- an information-intensive environment designed to give decision makers the ability to explore any policy matter from as many angles as possible. Based on political priorities, moral factors and the myriad other issues that influence real-world decisions, they could make their policy choices, informed by the best available insights from science.

A similar process of sensing, analysis and response, streamlined to work in real-time, could most likely have prevented the deadly stampede in Duisburg, and many others that happen every year. With modern automated video surveillance and analysis, computers monitoring a crowded location and calculating its likely future could easily detect warning signs such as a drop in the flow or a sudden increase in the crowd pressure. They could also predict the likely consequences of a gate being blocked, and give real-time warnings to police. Furthermore, they could offer advice regarding crowd management options and their likely impact on the system. Such a real-time monitoring and decision support system would be extremely useful to reduce the risk of a crowd disaster. So far the feedback loops that would bring the data and computer simulations together in real-time and inform the decision-makers are missing. The challenge here is to develop an integrative systems design that helps to manage complexity.

Although the systems FuturICT wants to build are sophisticated in amibition and scale, it is rapidly moving toward reality. For example, great progress has been made in large-scale computer simulations that will play a role within the Living Earth Visualator and the Crisis Observatories. These include simulations informing policy, for example, on traffic management in large cities, evacuation scenarios in response to external threats, or the spreading of diseases. Moreover, economists, working with a broad group of other scientists, have recently begun to develop simulation platforms for the entire European and US economies.

FuturICT aims to bring all this together on an unprecedented scale

"This is an experiment," says Joshua Epstein of John Hopkins University, "that we cannot afford NOT to do."

The FuturICT initiative aims at maximum transparency. An ethics committee will ensure that its research benefits society and that the data-mining approach will protect privacy. The project now seeks collaborations with business and industry, with government and administrative institutions, foundations and funding organizations to unleash the full potential of the project and create the societal and economic leverage effect expected by the European Union. Please contact Steven Bishoph (s.bishop@ucl.ac.uk), Paul Lukowicz (paul.lukowicz@uni-passau.de), Josh Epstein (jepste15@jhmi.edu), or Dirk Helbing (dhelbing@ethz.ch) for further details.

The proposed project involves more than 200 scientists from over 50 universities and institutions including ETH Zurich, Cambridge University, University College London-UCL, Oxford University, Imperial College, Politecnico di Torino, Centre National de la Recherche Scientifique, EPFL, La Sapienza University of Rome, University and TU Munich, Potsdam Institute of Climate Research, Central European University, King’s College London, London Business School and Open University, to mention only a few. A wide range of science organizations and George Soros have written letters in support for the initiative.

Claudia Naegeli | idw
Further information:
http://www.ethz.ch

More articles from Social Sciences:

nachricht The transparent soccer player
05.06.2018 | Technische Universität München

nachricht Illinois researchers researchers find tweeting in cities lower than expected
21.02.2018 | University of Illinois College of Engineering

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>