Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Best Practice for Engineering Science Faculties

DFG Workshop Presents International, Exemplary Management Models

How can the engineering science faculties of German universities meet the increasing demand for engineers in Germany, the world champion in exports? How must successful faculties of the future be structured in the face of increasing internationalisation and interdisciplinarity? And, what structures are particularly promising in this regard?

These questions were the focus of the workshop: “New Models for Governing Tomorrow’s Faculties of Engineering: Throwing Out the Baby with the Bath Water or Seizing New Opportunities”, recently held by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Some 40 high-ranking representatives of engineering science faculties who had been invited by DFG President Professor Matthias Kleiner travelled to the Head Office of Europe's largest research funding organisation in Bonn. In addition, representatives of the German Federal Ministry for Education and Research (BMBF), the German Rectors’ Conference (HRK) and the Alexander von Humboldt Foundation (AvH) participated in the workshop.

“Well-structured faculties are vital to us. They are an important setting for excellent research. For this reason, we would like to examine best practice examples of governance structures in engineering-science faculties from an international perspective and discuss them as they apply to the German university and research system,” said DFG President Kleiner as he outlined the primary focus of the workshop. Two such best practice concepts were presented in Bonn by their initiators. First, David Lynch, Dean of the Faculty of Engineering at the University of Alberta in Edmonton, Canada, described how he successfully realigned his faculty. Through an active professorship appointment and recruiting policy, he was not only able to considerably lower the average age of the faculty, but above all noticeably increase the interdisciplinarity and quality of the research work. Lynch was also very successful in his efforts in encouraging high school students to consider pursuing a degree in engineering. A thriving endowment culture rounds out the success model from Alberta, which also impressed Professor Frieder Meyer-Krahmer; BMBF State Secretary; Professor Kleiner; DFG President; and Professor Bernd Scholz-Reiter, DFG Vice President, during visits to Canada in the fall of 2007. This is also where the seed for the event in Bonn was planted, at which Meyer-Krahmer again emphasised the importance of Canada as an outstanding location for research and as an important cooperation partner for German research during the opening remarks.

As a best practice example from Germany, Detlef Löhe, Vice President for Research at the Karlsruhe Institute of Technology (KIT), presented his institution’s concept at the workshop in Bonn. Essentially, this organisation represents the merger of the University of Karlsruhe with the Karlsruhe Research Centre – a model that is unique in the German scientific landscape. The model also proved to be convincing in the Excellence Initiative of the federal and state governments for strengthening top-level research at universities and was awarded the coveted excellence status. Löhe's presentation illustrated the role that faculties will play in the future and what effects they will have on management structure and on researchers.

Also participating in the ensuing podium discussion was Manfred Nagl, chaiman of 4ING. The focus was on the best-possible management structures, particularly in the area of tension between the bottom-up and top-down approaches with respect to researchers. The questions of how engineers make the transition from industry back to universities and how more high school graduates, particularly females, can be encouraged to study the engineering sciences were also discussed.

As the presentations and discussion showed, the best practice examples open various options to engineering-science faculties in Germany. These were summarised in closing by DFG Vice President Scholz-Reiter in question form: Should the engineering sciences be based on more flexible, networked structures, such as those recently established by the Excellence Initiative in the universities? Or is success more likely to be found by strengthening the deanship structure and a professionalisation of the dean? Is a dean who is modelled on top-down acting Chief Executive Officer (CEO) more likely to be successful than the traditional model of the primus inter pares who represents the interests of the researchers according to the bottom-up principle? Or is the best solution a mixture of both?

How important the answers to these questions are was emphasised, last but not least, by DFG President Matthias Kleiner: “According to estimates, in five years we will be lacking 100,000 graduates, primarily in the engineering disciplines. For the faculties, this means that they will need to take innovative approaches in recruiting students and scientists and that they must make careers in science attractive.” Kleiner went on to say that, in particular, the salaries for researchers are not competitive, either internationally or compared to the market economy. The engineering faculties need to network more intensively with other scientific disciplines, particularly the natural sciences, in order to find new fields of research, said the DFG President. As Kleiner emphasised with reference to the title of the Bonn workshop, it all boils down to not throwing the baby – or in this case, Germany's excellent and world-renowned engineering education and engineering research – out with the bath water.

Further Information

Further information on the workshop including photos can be found at:

Jutta Hoehn | alfa
Further information:

More articles from Seminars Workshops:

nachricht 4th UKP-Workshop 2017 – Save the Date!
15.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Latest news around battery research
05.09.2016 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>