Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best Practice for Engineering Science Faculties

23.04.2008
DFG Workshop Presents International, Exemplary Management Models

How can the engineering science faculties of German universities meet the increasing demand for engineers in Germany, the world champion in exports? How must successful faculties of the future be structured in the face of increasing internationalisation and interdisciplinarity? And, what structures are particularly promising in this regard?

These questions were the focus of the workshop: “New Models for Governing Tomorrow’s Faculties of Engineering: Throwing Out the Baby with the Bath Water or Seizing New Opportunities”, recently held by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Some 40 high-ranking representatives of engineering science faculties who had been invited by DFG President Professor Matthias Kleiner travelled to the Head Office of Europe's largest research funding organisation in Bonn. In addition, representatives of the German Federal Ministry for Education and Research (BMBF), the German Rectors’ Conference (HRK) and the Alexander von Humboldt Foundation (AvH) participated in the workshop.

“Well-structured faculties are vital to us. They are an important setting for excellent research. For this reason, we would like to examine best practice examples of governance structures in engineering-science faculties from an international perspective and discuss them as they apply to the German university and research system,” said DFG President Kleiner as he outlined the primary focus of the workshop. Two such best practice concepts were presented in Bonn by their initiators. First, David Lynch, Dean of the Faculty of Engineering at the University of Alberta in Edmonton, Canada, described how he successfully realigned his faculty. Through an active professorship appointment and recruiting policy, he was not only able to considerably lower the average age of the faculty, but above all noticeably increase the interdisciplinarity and quality of the research work. Lynch was also very successful in his efforts in encouraging high school students to consider pursuing a degree in engineering. A thriving endowment culture rounds out the success model from Alberta, which also impressed Professor Frieder Meyer-Krahmer; BMBF State Secretary; Professor Kleiner; DFG President; and Professor Bernd Scholz-Reiter, DFG Vice President, during visits to Canada in the fall of 2007. This is also where the seed for the event in Bonn was planted, at which Meyer-Krahmer again emphasised the importance of Canada as an outstanding location for research and as an important cooperation partner for German research during the opening remarks.

As a best practice example from Germany, Detlef Löhe, Vice President for Research at the Karlsruhe Institute of Technology (KIT), presented his institution’s concept at the workshop in Bonn. Essentially, this organisation represents the merger of the University of Karlsruhe with the Karlsruhe Research Centre – a model that is unique in the German scientific landscape. The model also proved to be convincing in the Excellence Initiative of the federal and state governments for strengthening top-level research at universities and was awarded the coveted excellence status. Löhe's presentation illustrated the role that faculties will play in the future and what effects they will have on management structure and on researchers.

Also participating in the ensuing podium discussion was Manfred Nagl, chaiman of 4ING. The focus was on the best-possible management structures, particularly in the area of tension between the bottom-up and top-down approaches with respect to researchers. The questions of how engineers make the transition from industry back to universities and how more high school graduates, particularly females, can be encouraged to study the engineering sciences were also discussed.

As the presentations and discussion showed, the best practice examples open various options to engineering-science faculties in Germany. These were summarised in closing by DFG Vice President Scholz-Reiter in question form: Should the engineering sciences be based on more flexible, networked structures, such as those recently established by the Excellence Initiative in the universities? Or is success more likely to be found by strengthening the deanship structure and a professionalisation of the dean? Is a dean who is modelled on top-down acting Chief Executive Officer (CEO) more likely to be successful than the traditional model of the primus inter pares who represents the interests of the researchers according to the bottom-up principle? Or is the best solution a mixture of both?

How important the answers to these questions are was emphasised, last but not least, by DFG President Matthias Kleiner: “According to estimates, in five years we will be lacking 100,000 graduates, primarily in the engineering disciplines. For the faculties, this means that they will need to take innovative approaches in recruiting students and scientists and that they must make careers in science attractive.” Kleiner went on to say that, in particular, the salaries for researchers are not competitive, either internationally or compared to the market economy. The engineering faculties need to network more intensively with other scientific disciplines, particularly the natural sciences, in order to find new fields of research, said the DFG President. As Kleiner emphasised with reference to the title of the Bonn workshop, it all boils down to not throwing the baby – or in this case, Germany's excellent and world-renowned engineering education and engineering research – out with the bath water.

Further Information

Further information on the workshop including photos can be found at:
www.dfg.de/internationales/dfg_praesenz/washington/archiv/2008/workshop_bonn.html

Jutta Hoehn | alfa
Further information:
http://www.dfg.de/internationales/dfg_praesenz/washington/archiv/2008/workshop_bonn.html

More articles from Seminars Workshops:

nachricht Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog
29.06.2017 | Max-Planck-Institut für Physik komplexer Systeme

nachricht Blood flow under magnetic magnifier
21.06.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>