Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


4th Biomarker Workshop at the NMI in Reutlingen: Another success

The Biomarker Workshop held at the NMI in late January has become a fixed date for a growing number of proteomics researchers. With an attendance of 130, this year's workshop exceeded all previous ones. Those who were keen to find out more about the latest trends and findings were presented with a successful mix of basic and applied research information.

"The workshop has become well established and continues to present excellent speakers and new insights into proteomics," said Prof. Dr. Hugo Hämmerle, the new director of the NMI Natural and Medical Sciences Institute, at the opening of this year's Biomarker Workshop on 30th January 2008.

The experienced organisational team under the direction of Dr. Thomas Joos (NMI Reutlingen) and Dr. Jutta Bachmann (BioChipNet) once more presented an exceptional programme. Joos was pleased that all the speakers who had been invited accepted the invitation to come to Reutlingen - an indication of the excellence and the positive reputation of the workshop.

The first of the distinguished speakers to give a presentation was Dr. Oliver Steinbach, head of "Bio-Molecular Engineering" at Philips, who portrayed the latest developments in the Philips research labs in Eindhoven. Steinbach highlighted the increasing importance of molecular imaging in all areas of medicine, from research to preclinical drug development and diagnostics. The development of new and more effective technical solutions goes hand in hand with the development of a growing and more specific repertoire of targeted contrast agents that can be directed to specific parts of the body using biomarkers. Biomarkers are a key research topic at the NMI, which Steinbach cited as a major centre for proteomics.

Biomarkers are increasingly used in research and medicine

Dr. Thomas Caskey, a renowned researcher in molecular medicine (Houston, Texas, USA), gave a presentation on stem cell research. Caskey is the head of Molecular Medicine at the University of Texas and directs the Brown Foundation's Research Institute for Molecular Medicine. Caskey and his team used molecular genetic methods to differentiate embryonic stem cells into lung tissue cells (alveolar type II cells). Using specific biomarkers, Caskey's team was able to characterise the cells and identify the correct degree of differentiation.

In the third presentation, Dr. Hanno Langen (head of Proteomics at Hoffmann-La Roche in Basel, Switzerland) introduced innovative technologies in biomarker development that raise new prospects. Using the search for colon cancer markers as an example, Langen presented the time-consuming process of selecting suitable biomarker candidates. Dr. Mike Spain (Rules Based Medicine, Texas, USA) continued by portraying the use of biomarkers in simple ex-vivo methods in order to test drug candidates in whole blood cultures. Rules Based Medicine (RBM) is an international leader in the identification of biomarkers using multiplex technologies. In autumn 2007, RBM acquired EDI GmbH in Reutlingen.

Market opportunities for proteome-based technologies

Dr. Hans Berger (HB Consulting, Graz, Austria) presented a completely different perspective by elucidating the most important patents in the area of protein microarrays, their beginnings and the opportunities for new technologies. A specific class of substances, which in the USA alone has led to more than 400 patents and patent applications, are aptamers. These short single-strand nucleotides have a particular 3D structure and only bind to certain molecules. Dr. Larry Gold, CEO of SomaLogic, Boulder, USA showed how biomarkers can be identified using aptamers. Based on aptamers, SomeLogic introduced a proteomics platform with which it is possible to quantify a multitude of proteins in one approach.

NMI is the leader in the implementation of new proteomics results

Simultaneous, miniaturised approaches have boomed over the last few years, both in research as well as in industrial applications. As the NMI itself is a leader in the development of miniaturised immunoassay approaches, Dr. Thomas Joos described the enormous range of applications and new, innovative developments at the NMI. These developments include innovative methods that enable it to measure several dozen analytes in small amounts of sample, for example in 96-well format cell cultures.

Dr. Oliver Poetz, who also carries out research at the NMI in Reutlingen, completed the round of excellent presentations with a talk on "Triple X Proteomics". Working in the team of Thomas Joos, Poetz is developing peptide-specific capture antibodies (TXP antibodies) that can be used to enrich peptide groups sharing the same terminals sequence. Mass spectrometry readout allows the detection of these peptides. This approach makes it possible to overcome the currently problematic species-specificity of antibodies and generate antibodies that can be used for the detection of proteins in plants, animals and humans.

Dr. Nadja Gugeler | idw
Further information:

More articles from Seminars Workshops:

nachricht 4th UKP-Workshop 2017 – Save the Date!
15.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Latest news around battery research
05.09.2016 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>