Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuromorphic Computer Coming Online

16.03.2016

Web based application workshop for prospective users on 22 March

The novel, brain-inspired computing system BrainScaleS will be launched at the Kirchhoff Institute for Physics of Heidelberg University. A workshop will inform about possible applications of the neuromorphic system now coming online.

The workshop is addressed to users from academic research, industry and education and will be broadcasted as a web stream on 22 March 2016 from 3 pm to 6 pm CET. The BrainScaleS system has been constructed by an international research team led by Prof. Dr. Karlheinz Meier in the framework of the Human Brain Project (HBP) funded by the European Commission.

Neuromorphic computers mimic aspects of architectures and principles found in biological brains on silicon chips. “The Heidelberg BrainScaleS system goes beyond the paradigms of a Turing machine and the von Neumann architecture, both formulated during the middle of the 20th century by the computer pioneers Alan Turing and John von Neumann.

It is neither executing a sequence of instructions nor is it constructed as a system of physically separated computing and memory units. It is rather a direct, silicon based image of the neuronal networks found in nature, realising cells, connections and inter-cell communications by means of modern analogue and digital microelectronics,” explains Prof. Meier.

The recently completed system is composed of 20 silicon wafers with a total of four million neurons and a billion dynamic synaptic connections. Learn and developmental processes can be emulated with a thousand fold acceleration over real time, so that a biological day can be compressed to 100 seconds on the machine.

Beyond basic research on self organisation in neural networks, potential applications are for example in energy and time efficient realisations of Deep Learning, a technology developed by companies like Google and Facebook for the analysis of large data volumes using conventional high performance computers.

In parallel to the launch of the Heidelberg BrainScaleS system a complementary system with comparable size called SpiNNaker will become operational at the University of Manchester (UK). Led by the computer scientist Prof. Dr. Steve Furber, co-designer of the ARM chip architecture in the 1980s, a large-scale system consisting of 500.000 densely interconnected ARM cores was constructed there.

Also this system will be introduced during the web based workshop on 22 March. Together, the systems located in Heidelberg and Manchester constitute the “Neuromorphic Computing Platform” of the Human Brain Project.

The European developments are based on two previous European projects, FACETS and BrainScaleS, funded from 2005 to 2015 by the “Future Emerging Technologies” (FET) scheme of the European Commission, and on the national project SpiNNaker in the UK. With the two new machines now coming online Europe has a strong position in hardware development in the field of alternative computing. In the USA, the IBM Research Laboratory in Almaden (California) has developed the TrueNorth Chip, yet another approach, which is complementary to both of the European systems.

Contact:
Prof. Dr. Karlheinz Meier
Kirchhoff Institute for Physics
Phone +49 6221 54-9831
meierk@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

Workshop 22 March – http://neuromorphic.eu

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Seminars Workshops:

nachricht Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog
29.06.2017 | Max-Planck-Institut für Physik komplexer Systeme

nachricht Blood flow under magnetic magnifier
21.06.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers discover Achilles' heel of bacteria

HZI researchers identify a protein in Salmonella that contributes to the assembly of the motility apparatus – a possible target for novel medications

Salmonellae are particularly resistant to antibiotics since they possess not only one, but two membranes that protect them from harmful substances. This makes...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

 
Latest News

The plant hormone auxin controls almost everything – what is the secret of its power?

07.08.2017 | Life Sciences

Carbon conversion

07.08.2017 | Life Sciences

Molecular biologists discover an active role of membrane lipids in health and disease

07.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>