Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neuromorphic Computer Coming Online


Web based application workshop for prospective users on 22 March

The novel, brain-inspired computing system BrainScaleS will be launched at the Kirchhoff Institute for Physics of Heidelberg University. A workshop will inform about possible applications of the neuromorphic system now coming online.

The workshop is addressed to users from academic research, industry and education and will be broadcasted as a web stream on 22 March 2016 from 3 pm to 6 pm CET. The BrainScaleS system has been constructed by an international research team led by Prof. Dr. Karlheinz Meier in the framework of the Human Brain Project (HBP) funded by the European Commission.

Neuromorphic computers mimic aspects of architectures and principles found in biological brains on silicon chips. “The Heidelberg BrainScaleS system goes beyond the paradigms of a Turing machine and the von Neumann architecture, both formulated during the middle of the 20th century by the computer pioneers Alan Turing and John von Neumann.

It is neither executing a sequence of instructions nor is it constructed as a system of physically separated computing and memory units. It is rather a direct, silicon based image of the neuronal networks found in nature, realising cells, connections and inter-cell communications by means of modern analogue and digital microelectronics,” explains Prof. Meier.

The recently completed system is composed of 20 silicon wafers with a total of four million neurons and a billion dynamic synaptic connections. Learn and developmental processes can be emulated with a thousand fold acceleration over real time, so that a biological day can be compressed to 100 seconds on the machine.

Beyond basic research on self organisation in neural networks, potential applications are for example in energy and time efficient realisations of Deep Learning, a technology developed by companies like Google and Facebook for the analysis of large data volumes using conventional high performance computers.

In parallel to the launch of the Heidelberg BrainScaleS system a complementary system with comparable size called SpiNNaker will become operational at the University of Manchester (UK). Led by the computer scientist Prof. Dr. Steve Furber, co-designer of the ARM chip architecture in the 1980s, a large-scale system consisting of 500.000 densely interconnected ARM cores was constructed there.

Also this system will be introduced during the web based workshop on 22 March. Together, the systems located in Heidelberg and Manchester constitute the “Neuromorphic Computing Platform” of the Human Brain Project.

The European developments are based on two previous European projects, FACETS and BrainScaleS, funded from 2005 to 2015 by the “Future Emerging Technologies” (FET) scheme of the European Commission, and on the national project SpiNNaker in the UK. With the two new machines now coming online Europe has a strong position in hardware development in the field of alternative computing. In the USA, the IBM Research Laboratory in Almaden (California) has developed the TrueNorth Chip, yet another approach, which is complementary to both of the European systems.

Prof. Dr. Karlheinz Meier
Kirchhoff Institute for Physics
Phone +49 6221 54-9831

Communications and Marketing
Press Office, phone +49 6221 54-2311

Weitere Informationen:

Workshop 22 March –

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Seminars Workshops:

nachricht 4th UKP-Workshop 2017 – Save the Date!
15.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Latest news around battery research
05.09.2016 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>