Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoengineered Materials Workshop to Meet Sept. 16-18

16.09.2010
Two groups of scientists who rarely get together will jointly consider the technological future of nanoscale materials in a workshop that will meet at the University of Chicago’s Kersten Physics Teaching Center from Sept. 16-18.

The Electronic Transport in Nanoengineered Materials workshop is sponsored by UChicago’s Materials Research Science and Engineering Center. Among the approximately 70 participants will be physical chemists, who make new materials and study their properties, and theoretical physicists who specialize in the study of solid matter.

“You don’t find this kind of assembly of high-powered, solid-state theorists and high-powered chemists together in the same room,” said Philippe Guyot-Sionnest, a Professor in Chemistry and Physics at UChicago.

Materials development over the last few years motivated Guyot-Sionnest and Dmitri Talapin, Assistant Professor in Physics, to organize the workshop, along with their UChicago colleagues Henrich Jaeger, the William J. Friedman and Alicia Townsend Professor in Physics, and Ilya Gruzberg, Assistant Professor in Chemistry.

“The theoretical background existed for about half a century,” Talapin said. “During the past five years or so, maybe 10 years at most, people learned how to make really amazing materials that theoreticians could not even dream about 20 years ago.”

Conventional methods for building smaller electronic components have involved working from the top down: chiseling ever-finer structures out of a larger piece of material. The workshop participants, by contrast, are focused on working from the bottom up: building larger structures from smaller building blocks.

Workshop participants will grapple with two challenges: is it now possible to synthesize three-dimensional materials at the nanoscale of atoms and molecules? And further, can the components of these objects communicate with each other via magnetic, thermal or electric signals?

Much of the workshop will highlight the technological potential of quantum dots, which are also called semiconductor nanocrystals. Quantum dots emit light in a rainbow of colors and have previously been used in lasers, biological studies and other applications.

Speakers focusing on quantum dots will include Moungi Bawendi, PhD’88, and Vladimir Bulovic, both of the Massachusetts Institute of Technology. Bawendi invented a method for making quantum dots that scientists have adopted the world over. He collaborates with Bulovic, who founded a start-up company, QD Vision of Watertown, Mass., to harness the capabilities of quantum dots for flat-panel displays and other products.

“He wants to make flat-panel displays that compete with the organic, light-emitting diode displays you see now starting to emerge from Samsung and other electronic companies,” Guyot-Sionnest said.

Structural disorder in nanocrystals

The structural disorder common to nanocrystals presents a hurdle for device makers, according to Guyot-Sionnest. “The question is, how do you get charge to flow smoothly through such an array of boulders,” he said.

Transporting electrons through quantum dots was not possible as recently as eight years ago. “It just then started to become conceivable that you could get electron flow, and there’s been constant progress,” Guyot-Sionnest said.

Also speaking at the workshop will be the University of Minnesota’s Boris Shklovskii, who helped pioneer the theory of electron transport through disordered materials in the 1970s.

“A peculiar thing about this field is that the theoretical framework used to describe this transport is really sophisticated,” Talapin said. Developing this framework led to the 1977 Nobel Prize in Physics for Sir Neville Mott and to the 1986 Landau Prize of the Soviet Academy of Sciences for Shklovskii.

The conference will close on Saturday afternoon with a session on superconductivity, the transmission of electric current without any loss of flow. Superconductivity can now be achieved only at freezing temperatures.

Superconductivity at higher, more practical temperatures has been touted for potential applications ranging from superfast computers to levitating trains. It remains unknown if nanoengineering can lead to a better superconductor, said Guyot-Sionnest, “but it is conceivable that controlling the nanoscale can positively affect the parameters controlling the critical temperature.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: CHEMISTRY Nanoengineered Nobel Prize flat-panel displays quantum dot

More articles from Seminars Workshops:

nachricht Virtual Worlds: Research Trends in Mobile 3D Data Collection
30.11.2016 | Fraunhofer IPM

nachricht 4th UKP-Workshop 2017 – Save the Date!
15.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>