Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoengineered Materials Workshop to Meet Sept. 16-18

16.09.2010
Two groups of scientists who rarely get together will jointly consider the technological future of nanoscale materials in a workshop that will meet at the University of Chicago’s Kersten Physics Teaching Center from Sept. 16-18.

The Electronic Transport in Nanoengineered Materials workshop is sponsored by UChicago’s Materials Research Science and Engineering Center. Among the approximately 70 participants will be physical chemists, who make new materials and study their properties, and theoretical physicists who specialize in the study of solid matter.

“You don’t find this kind of assembly of high-powered, solid-state theorists and high-powered chemists together in the same room,” said Philippe Guyot-Sionnest, a Professor in Chemistry and Physics at UChicago.

Materials development over the last few years motivated Guyot-Sionnest and Dmitri Talapin, Assistant Professor in Physics, to organize the workshop, along with their UChicago colleagues Henrich Jaeger, the William J. Friedman and Alicia Townsend Professor in Physics, and Ilya Gruzberg, Assistant Professor in Chemistry.

“The theoretical background existed for about half a century,” Talapin said. “During the past five years or so, maybe 10 years at most, people learned how to make really amazing materials that theoreticians could not even dream about 20 years ago.”

Conventional methods for building smaller electronic components have involved working from the top down: chiseling ever-finer structures out of a larger piece of material. The workshop participants, by contrast, are focused on working from the bottom up: building larger structures from smaller building blocks.

Workshop participants will grapple with two challenges: is it now possible to synthesize three-dimensional materials at the nanoscale of atoms and molecules? And further, can the components of these objects communicate with each other via magnetic, thermal or electric signals?

Much of the workshop will highlight the technological potential of quantum dots, which are also called semiconductor nanocrystals. Quantum dots emit light in a rainbow of colors and have previously been used in lasers, biological studies and other applications.

Speakers focusing on quantum dots will include Moungi Bawendi, PhD’88, and Vladimir Bulovic, both of the Massachusetts Institute of Technology. Bawendi invented a method for making quantum dots that scientists have adopted the world over. He collaborates with Bulovic, who founded a start-up company, QD Vision of Watertown, Mass., to harness the capabilities of quantum dots for flat-panel displays and other products.

“He wants to make flat-panel displays that compete with the organic, light-emitting diode displays you see now starting to emerge from Samsung and other electronic companies,” Guyot-Sionnest said.

Structural disorder in nanocrystals

The structural disorder common to nanocrystals presents a hurdle for device makers, according to Guyot-Sionnest. “The question is, how do you get charge to flow smoothly through such an array of boulders,” he said.

Transporting electrons through quantum dots was not possible as recently as eight years ago. “It just then started to become conceivable that you could get electron flow, and there’s been constant progress,” Guyot-Sionnest said.

Also speaking at the workshop will be the University of Minnesota’s Boris Shklovskii, who helped pioneer the theory of electron transport through disordered materials in the 1970s.

“A peculiar thing about this field is that the theoretical framework used to describe this transport is really sophisticated,” Talapin said. Developing this framework led to the 1977 Nobel Prize in Physics for Sir Neville Mott and to the 1986 Landau Prize of the Soviet Academy of Sciences for Shklovskii.

The conference will close on Saturday afternoon with a session on superconductivity, the transmission of electric current without any loss of flow. Superconductivity can now be achieved only at freezing temperatures.

Superconductivity at higher, more practical temperatures has been touted for potential applications ranging from superfast computers to levitating trains. It remains unknown if nanoengineering can lead to a better superconductor, said Guyot-Sionnest, “but it is conceivable that controlling the nanoscale can positively affect the parameters controlling the critical temperature.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: CHEMISTRY Nanoengineered Nobel Prize flat-panel displays quantum dot

More articles from Seminars Workshops:

nachricht Virtual Worlds: Research Trends in Mobile 3D Data Collection
30.11.2016 | Fraunhofer IPM

nachricht 4th UKP-Workshop 2017 – Save the Date!
15.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>