Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Workshop Makes Major Advance In Cancer Radiotherapy

10.11.2008
Radical improvements in outcome for many cancer sufferers are in prospect following one of the most significant advances in radiotherapy since x-rays were first used to treat a tumour in 1904.

The use of charged particles as an alternative to x-ray or gamma ray radiation can extend the scope of radiotherapy to tumours previously requiring invasive surgery, while speeding up diagnosis and reducing collateral damage to surrounding tissue.

This fast emerging field of charged particle cancer therapy was thrashed out at a recent workshop organised by the European Science Foundation (ESF), which discussed new instruments that will lead to improvements in both diagnosis and treatment. Diagnosis and treatment are closely linked in radiotherapy, since more accurate location of tumour cells in turn enables the radiation dose to be more precisely focused.

"Developments in imaging have allowed improvements in radiation beam placement, and the two areas tend to go together," said Barbara Camanzi, convenor of the ESF workshop, and specialist in radiotherapy instrumentation at the Rutherford Appleton Laboratory Department of Particle Physics near Oxford in the UK. This in turn improves prospects of destroying the tumour while reducing collateral damage to healthy tissue nearby. Such collateral damage causes not just tissue death, but can lead to induction of secondary tumours, which has been a long standing problem for traditional radiotherapy using x rays. Some tissue cells close to the tumour receive enough radiation to trigger mutations in their DNA that can cause them to become malignant, but not enough radiation to kill them.

"The fall in collateral radiation deposition in the body ranges from a factor of 2 to 15 depending on the precise treatment indication and body site," noted Bleddyn Jones, an oncologist attending the ESF workshop, from the Gray Institute for Radiation Oncology and Biology in Oxford, UK. "All techniques using external gamma rays and x-rays impart a larger dose to surrounding healthy tissue with long term risks of functional changes and malignant induction."

The improved imaging made possible by use of charged particles also makes it easier to detect tumours when they are small, improving prospects for patients whether or not they actually undergo radiotherapy. "Making an earlier diagnosis of a smaller cancer increases the chance of cure following either particle beam therapy or surgery," said Camanzi.

However, the ESF workshop identified that further significant improvements in instrumentation were required, both for treatment and diagnosis, to exploit the full potential of charged particles for cancer therapy. Further work was also required to adjust dose to minimise the risk of secondary tumour formation caused by the radiation, which remains a risk with use of charged particles. The ESF workshop also addressed the need for improved design of the gantry systems used both for imaging and to deliver the radiation doses in treatment.

The other important issue addressed by the ESF workshop is educating radiotherapy consultants in the new techniques so that they are in a position to determine the best form of treatment for each individual case. Sometimes charged therapy may be the best method, in other cases traditional x-ray therapy, and in yet others surgery or chemotherapy, or combinations of these.

"There is a need to hold more educational and training meetings on particle therapy especially in those European countries that at present have no plans for such facilities," said Camanzi, who noted that a follow up symposium in Oxford had been proposed for 2010.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6463

More articles from Seminars Workshops:

nachricht Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog
29.06.2017 | Max-Planck-Institut für Physik komplexer Systeme

nachricht Blood flow under magnetic magnifier
21.06.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>