Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Leaders Issue Statement on Preparing Graduate Students for Global Careers

07.09.2012
International Guidelines Created for Supporting Global Skills and Careers

Higher education leaders from 15 countries agreed today on a set of principles to guide the preparation of graduate students for the demands of the global workforce and economy. The statement was released following the Sixth Annual Strategic Leaders Global Summit, “From Brain Drain to Brain Circulation:

Graduate Education for Global Career Pathways,” jointly hosted by the U.S.‐based Council of Graduate Schools (CGS) and the Technische Universität München. The Global Summit is an annual event designed to promote international best practices on current issues in master’s and doctoral education.

This 2012 summit re‐examined the concept of “brain drain” in light of several global trends:
- Global R&D networks, along with new technologies for collaboration, are stimulating research that benefits multiple countries and regions.
- Many countries are making new investments in graduate education in order to maintain a strong domestic talent pool and recruit international students.
- Evidence suggests that researchers and highly educated professionals may work in multiple countries over the course of their careers.

Session topics addressed new patterns of talent mobility by country and region, new opportunities for students to develop global skills, and collaborations between international universities that prepare students for the global workforce.

Professor Ernst Rank, Director of the TUM Graduate School and the International Graduate School of Science and Engineering, explained: "In the past and to a large extent still today, many countries have seen themselves either on the side of brain gain or brain drain. The global summit clearly showed that these categories can no longer simply be associated with 'winning' or 'losing' talents. On the contrary, the globalized scientific and economic community demands circulation of brains — that is, mobility in networks, openness for exchange, and flow of minds and ideas."

In the final session, participants discussed key issues that emerged in the forum and developed a consensus statement to guide future action. The “Principles for Supporting Global Careers in Graduate Education” include integrating international experience into graduate degree programs, defining high‐level global skills, and collaborating with external partners to stimulate multi‐directional flows of knowledge workers.

CGS President Debra Stewart noted, “The principles will help advance the global conversation about a key priority for graduate schools—helping students and new researchers make the transition to successful careers. But they also take us into important new territory, providing guidelines that will help universities prepare future researchers to understand the global possibilities and impacts of their professional lives.”

The 34 participants included deans and other leaders of graduate schools and representatives of national and international associations devoted to graduate education. Along with Germany and the United States, the countries represented were: Australia, Brazil, Canada, Chile, China (PRC and Hong Kong), Denmark, Hungary, Luxembourg, Malaysia, the Netherlands, Singapore, South Africa, and South Korea.

---
Principles for Supporting Global Careers in Graduate* Education
Today’s doctoral and master’s students will enter and lead a rapidly globalizing economy and research enterprise. In a world where technology and research offer new opportunities for global collaboration, all early-stage researchers must be prepared for the challenges and opportunities of a globalizing workforce. The participants of the 2012 Global Summit on Graduate Education encourage ‘brain circulation,’ or the multi-directional flow of talents, education and research that benefit multiple countries and regions and the advancement of global knowledge. It is the responsibility of graduate schools to match expectations for doctoral and master’s students and faculty training with opportunities and incentives.

At the same time, a productive discussion of “brain drain” and “brain circulation” requires careful examination of terms, assumptions, and values. Graduate leaders recognized the need to distinguish between a short-term and a long-term perspective on the global mobility of talent. While it is useful to track short-term patterns of student mobility, it is also important to understand long-term impacts of mobility on individuals, national and global economies, and global research and development.

In this context, it is important for universities and graduate schools to:


1. Communicate the value and relevance of the broader concept of ‘brain circulation.’ Graduate leaders have an important role to play in communicating the importance of global training opportunities for students, early-stage researchers and faculty on their campuses.

2. Integrate international experiences and training into graduate degree programs. These experiences can take place both at home and abroad. Not only should universities promote joint and dual degree programs, academic research exchanges, and internships, they should also use the international diversity of their campuses as a basis for training in cross­-cultural skills.

3. Provide robust support systems, programs and services for international students and early-stage researchers on their campuses.

4. Respect reciprocity in international collaborations and recognize both material and non-material contributions.

5. Engage the intellectual leadership of faculty and students in developing innovative and interdisciplinary global research practices and related experiences appropriate to the field.
6. Identify specific global competencies within and across degree programs. As they prepare future knowledge leaders, faculty and researchers have an important role to play in identifying these competencies by degree type and across fields of study, and across sectors.

7. Prepare students and faculty to use emerging technologies to advance and share knowledge globally. New technologies are essential to research collaboration and management, communication, and networking.

8. Prepare graduate students for ethical issues that emerge in a globalizing workforce. At stake in this preparation is human health and safety, the protection of the environment, and the quality of research.

9. Assess and share the outcomes of global experiences and partnerships. Assessments of institutional benefits, research outcomes, and learning are essential and will be most meaningful if designed to improve the quality of programs. It is critical to differentiate desired outcomes for different career pathways, e.g. in academia, industry, government and non-profit sectors.

10. Collaborate with external partners in government, industry, professional societies, and non-governmental (NGO) sectors to facilitate multi-directional talent flows. In particular, universities have an important role to play in communicating the impact of policies regarding, for example, immigration and professional credentials, on research productivity, national and regional economies, and on individual career trajectories.

11. Encourage funding agencies to allocate funding for international research experience and global competency training for PhD candidates.
* The definition of the term “graduate” varies by country and region. In the context of this statement, it designates master’s and doctoral education.

About CGS
The Council of Graduate Schools (CGS) is an organization of over 500 institutions of higher education in the United States and Canada engaged in graduate education, research, and the preparation of candidates for advanced degrees. Among U.S. institutions, CGS members award 92% of the doctoral degrees and 77% of the master’s degrees. (Based on data from the 2010 CGS/GRE Survey of Graduate Enrollment and Degrees.) The organization’s mission is to improve and advance graduate education, which it accomplishes through advocacy in the federal policy arena, research, and the development and dissemination of best practices.
http://www.cgsnet.org

About Technische Universität München
TUM is one of Europe's leading universities. It has roughly 480 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university. The TUM Graduate School promotes interdisciplinary and international qualification programs so that at the end of the doctoral program, candidates will not only have team leadership and project management skills, but also the entrepreneurial spirit for leading roles in industry, academia, and science.

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>