Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New teaching tools aid visually impaired students in learning math

16.03.2010
Mastering mathematics can be daunting for many children, but researchers have found that children with visual impairments face disproportionate challenges learning math, and by the time they reach the college level, they are significantly under-represented in science, technology, mathematics and engineering disciplines.

Researchers at the University of Illinois are helping shape the futures of children with visual disabilities by creating innovative teaching tools that are expected to help the children learn mathematics more easily – and perhaps multiply their career opportunities when they reach adulthood.

Nearly 5 million – or one in 20 – preschool-aged children and about 12.1 million children ages 6-17 have visual impairments, according to the Braille Institute.

Sheila Schneider, who is a senior and the first student who is legally blind to major in sculpture in the School of Art+Design within the College of Fine and Applied Arts at Illinois, is creating a series of small sculptures with mathematical equations imprinted on them in Braille that will be used to help children with visual impairments learn mathematics. The equations will be written in Nemeth Code, a form of Braille used for mathematical and scientific symbols.

“The sculptures are organic forms that are designed to be hand-held by children around the ages of 7-10,” said Deana McDonagh, a professor of industrial design and the lead investigator on the project. “They’re designed from the viewpoint of a younger child.”

“They’re very engaging, fun educational tools, and when the children run their hands over them, they’ll realize that there are Braille equations embedded within the forms,” McDonagh said. “We’re hoping that they’ll become mainstream educational tools.”

Traditionally, children with visual disabilities are taught to solve mathematical problems using abacuses, tools that may seem antiquated in today’s world and foster stigmatization, Schneider said.

“We’re trying to bring the education of visually impaired children more up to date, rather than relying on staid methods of doing things,” Schneider said. “We’re hoping to eliminate this idea that blind children have to learn math with an abacus because they can’t see to write on a piece of paper. We’re trying to eliminate the stigma and provide them with a method of engaging in and with math.

“We’re hoping that as they grow older, they’ll become more interested in careers in science, technology, engineering and mathematics fields.”

Schneider sculpted six models, each a few inches in diameter, from cubes of balsa foam. The models are being translated into three-dimensional computer images to finalize the shapes and position the equations before the sculptures are cast from bronze, a durable material that can withstand extensive handling and occasionally being dropped.

“Where you and I might place the Braille equations is of no consequence,” McDonagh said. “When children with visual impairments are handling the sculptures, and reading them with their fingertips, it’s got to make sense to them where we place the Braille in three-dimensional space.”

Once the sculptures have been cast, the next step will be to have children with visual impairments and their teachers use them in math instruction to assess the sculptures’ efficacy as teaching tools.

“The number of people with disabilities is on the increase, and our population and its needs are changing,” said McDonagh, whose research and teaching focuses on empathic product design, assistive technologies and disability issues.”

“We’re trying to use people’s different life experiences and respect that there are different ways of doing things,” McDonagh said. “It’s an opportunity to bridge the gulf between the lived experience and science, mathematics and technology through sculpture.”

Renderings of the models will be displayed April 26-30 as components of Schneider’s graduate exhibition for her bachelor of fine arts degree, which she expects to receive at the end of the spring semester. The exhibition, which will be geared toward people with disabilities and will comprise stone sculptures and other pieces, will be held on the fourth floor of the Illini Media building, 512 E. Green St., Champaign.

Sharita Forrest | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>