Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New teaching tools aid visually impaired students in learning math

16.03.2010
Mastering mathematics can be daunting for many children, but researchers have found that children with visual impairments face disproportionate challenges learning math, and by the time they reach the college level, they are significantly under-represented in science, technology, mathematics and engineering disciplines.

Researchers at the University of Illinois are helping shape the futures of children with visual disabilities by creating innovative teaching tools that are expected to help the children learn mathematics more easily – and perhaps multiply their career opportunities when they reach adulthood.

Nearly 5 million – or one in 20 – preschool-aged children and about 12.1 million children ages 6-17 have visual impairments, according to the Braille Institute.

Sheila Schneider, who is a senior and the first student who is legally blind to major in sculpture in the School of Art+Design within the College of Fine and Applied Arts at Illinois, is creating a series of small sculptures with mathematical equations imprinted on them in Braille that will be used to help children with visual impairments learn mathematics. The equations will be written in Nemeth Code, a form of Braille used for mathematical and scientific symbols.

“The sculptures are organic forms that are designed to be hand-held by children around the ages of 7-10,” said Deana McDonagh, a professor of industrial design and the lead investigator on the project. “They’re designed from the viewpoint of a younger child.”

“They’re very engaging, fun educational tools, and when the children run their hands over them, they’ll realize that there are Braille equations embedded within the forms,” McDonagh said. “We’re hoping that they’ll become mainstream educational tools.”

Traditionally, children with visual disabilities are taught to solve mathematical problems using abacuses, tools that may seem antiquated in today’s world and foster stigmatization, Schneider said.

“We’re trying to bring the education of visually impaired children more up to date, rather than relying on staid methods of doing things,” Schneider said. “We’re hoping to eliminate this idea that blind children have to learn math with an abacus because they can’t see to write on a piece of paper. We’re trying to eliminate the stigma and provide them with a method of engaging in and with math.

“We’re hoping that as they grow older, they’ll become more interested in careers in science, technology, engineering and mathematics fields.”

Schneider sculpted six models, each a few inches in diameter, from cubes of balsa foam. The models are being translated into three-dimensional computer images to finalize the shapes and position the equations before the sculptures are cast from bronze, a durable material that can withstand extensive handling and occasionally being dropped.

“Where you and I might place the Braille equations is of no consequence,” McDonagh said. “When children with visual impairments are handling the sculptures, and reading them with their fingertips, it’s got to make sense to them where we place the Braille in three-dimensional space.”

Once the sculptures have been cast, the next step will be to have children with visual impairments and their teachers use them in math instruction to assess the sculptures’ efficacy as teaching tools.

“The number of people with disabilities is on the increase, and our population and its needs are changing,” said McDonagh, whose research and teaching focuses on empathic product design, assistive technologies and disability issues.”

“We’re trying to use people’s different life experiences and respect that there are different ways of doing things,” McDonagh said. “It’s an opportunity to bridge the gulf between the lived experience and science, mathematics and technology through sculpture.”

Renderings of the models will be displayed April 26-30 as components of Schneider’s graduate exhibition for her bachelor of fine arts degree, which she expects to receive at the end of the spring semester. The exhibition, which will be geared toward people with disabilities and will comprise stone sculptures and other pieces, will be held on the fourth floor of the Illini Media building, 512 E. Green St., Champaign.

Sharita Forrest | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>