Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Help Students Think like Soil Scientists

30.09.2009
Emphasizing cross-disciplinary concepts in teaching soil science courses, such as mass-volume relationships, can help undergraduates learn real-world, problem-solving skills that are crucial to their success in soil science careers.

Drs. Josh Heitman and Michael Vepraskas, North Carolina State University Soil Science Department, highlighted this need for quantitative measurement skills in an article detailing the importance of teaching mass and volume relationships at the undergraduate level. The article is published in the recent issue of the Journal of Natural Resources and Life Sciences Education.

Basic physical concepts, such as mass and volume relationships, are found throughout different scientific disciplines. This provides a framework for cross-disciplinary communication that should be emphasized in undergraduate soils training. For soils students to develop these skills, undergraduate course work highlighting quantitative ways to characterize and describe soils is critical. Soil science-specific terminology can, and should, be maintained, but fundamental, cross-disciplinary definitions must be emphasized so that the terminology is clearly connected to what it means.

Subsidence (i.e. loss of horizon thickness) can provide a clear example to emphasize basic mass-volume concepts for problem solving in soils courses. Drainage of wetland soils for agriculture and other purposes has been a common practice for many years. However, drainage of organic soils results in subsidence through shrinkage, loss of buoyancy, and oxidation of organic matter. More recently, much work has focused on restoration of wetland soils to their original natural condition. Discussing restoration of an organic wetland soil can provide a practical problem solving lesson for teaching about subsidence and mass-volume relationships.

The question of how much the soil has subsided is important to consider. Restoration normally causes the water table to rise to the levels that existed before drainage and subsidence. If a soil has subsided 1 meter, for example, then when restored, the water table will be 1 m above the existing surface, creating ponding and impairing the growth of replanted vegetation. Determining how much soil has subsided can be difficult because there is typically no marker or baseline to indicate the position of the original soil surface prior to drainage. Data are only available to describe current conditions for a particular soil profile. Scientists must make use of mass-volume relationship and inference to assess the amount of subsidence that has occurred. Information about post-drainage and un-drained, offsite horizon thickness, bulk density, and mineral content can be used to develop an estimate of the amount of subsidence.

When approaching this problem, students should be encouraged to consider which mass and volume components of the three-phase (i.e. solid – mineral and organic, liquid, and gas) soil system have been altered by subsidence. Both primary (i.e. loss of buoyancy and shrinkage) and secondary (i.e. oxidation) subsidence must be considered. From there we consider what relationships (e.g. bulk density and mineral content) have changed among these soil phases. Students can evaluate soil profile data obtained from drained and un-drained sites including sand content, bulk density, and horizon thickness. They may then begin to solve the problem by developing their own assumptions or may be guided to the assumptions in the original study:

Careful explanation of this example problem to students in undergraduate course work provides a way to incorporate concepts of mass, volume, soil bulk density, mineral and organic fractions, and subsidence in a practical, problem-solving framework. This, in turn, makes for a better understanding of how to compute other mass-volume soil properties such as water contents and porosity that, in our experience, are difficult for our students to grasp. For instructors, considering this example may also suggest parallel problems involving other applications of important quantitative concepts. Addition of this or similar exercises to undergraduate soils course work can help to equip students with quantitative tools important to success in a multi-disciplinary career environment.

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org , is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>