Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Help Students Think like Soil Scientists

30.09.2009
Emphasizing cross-disciplinary concepts in teaching soil science courses, such as mass-volume relationships, can help undergraduates learn real-world, problem-solving skills that are crucial to their success in soil science careers.

Drs. Josh Heitman and Michael Vepraskas, North Carolina State University Soil Science Department, highlighted this need for quantitative measurement skills in an article detailing the importance of teaching mass and volume relationships at the undergraduate level. The article is published in the recent issue of the Journal of Natural Resources and Life Sciences Education.

Basic physical concepts, such as mass and volume relationships, are found throughout different scientific disciplines. This provides a framework for cross-disciplinary communication that should be emphasized in undergraduate soils training. For soils students to develop these skills, undergraduate course work highlighting quantitative ways to characterize and describe soils is critical. Soil science-specific terminology can, and should, be maintained, but fundamental, cross-disciplinary definitions must be emphasized so that the terminology is clearly connected to what it means.

Subsidence (i.e. loss of horizon thickness) can provide a clear example to emphasize basic mass-volume concepts for problem solving in soils courses. Drainage of wetland soils for agriculture and other purposes has been a common practice for many years. However, drainage of organic soils results in subsidence through shrinkage, loss of buoyancy, and oxidation of organic matter. More recently, much work has focused on restoration of wetland soils to their original natural condition. Discussing restoration of an organic wetland soil can provide a practical problem solving lesson for teaching about subsidence and mass-volume relationships.

The question of how much the soil has subsided is important to consider. Restoration normally causes the water table to rise to the levels that existed before drainage and subsidence. If a soil has subsided 1 meter, for example, then when restored, the water table will be 1 m above the existing surface, creating ponding and impairing the growth of replanted vegetation. Determining how much soil has subsided can be difficult because there is typically no marker or baseline to indicate the position of the original soil surface prior to drainage. Data are only available to describe current conditions for a particular soil profile. Scientists must make use of mass-volume relationship and inference to assess the amount of subsidence that has occurred. Information about post-drainage and un-drained, offsite horizon thickness, bulk density, and mineral content can be used to develop an estimate of the amount of subsidence.

When approaching this problem, students should be encouraged to consider which mass and volume components of the three-phase (i.e. solid – mineral and organic, liquid, and gas) soil system have been altered by subsidence. Both primary (i.e. loss of buoyancy and shrinkage) and secondary (i.e. oxidation) subsidence must be considered. From there we consider what relationships (e.g. bulk density and mineral content) have changed among these soil phases. Students can evaluate soil profile data obtained from drained and un-drained sites including sand content, bulk density, and horizon thickness. They may then begin to solve the problem by developing their own assumptions or may be guided to the assumptions in the original study:

Careful explanation of this example problem to students in undergraduate course work provides a way to incorporate concepts of mass, volume, soil bulk density, mineral and organic fractions, and subsidence in a practical, problem-solving framework. This, in turn, makes for a better understanding of how to compute other mass-volume soil properties such as water contents and porosity that, in our experience, are difficult for our students to grasp. For instructors, considering this example may also suggest parallel problems involving other applications of important quantitative concepts. Addition of this or similar exercises to undergraduate soils course work can help to equip students with quantitative tools important to success in a multi-disciplinary career environment.

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org , is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Science Education:

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>