Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starting school boosts development

11.05.2017

A longitudinal study carried out at the Max Planck Institute for Human Development sheds light on the effects of school entrance on the brain development of children. The findings are published in Psychological Science.

Sitting still, following lessons, resisting distractions by fellow pupils and other enticements – starting school is a challenge for first-year pupils, who have often come from play-oriented kindergarten. However, the structured learning environment of school appears to affect children’s brains rapidly.

Within the first year of school, the ability to concentrate and to control behavior is already better than that of kindergarten children of similar ages. This is the result of a study carried out by researchers at the Max Planck Institute for Human Development and the University of California, Berkeley.

„Between five and seven years of age, children make great leaps and bounds in development, particularly in the ability to control their own behavior. We were interested in finding out whether this is only related to general maturation of the brain or also to school entrance, which often occurs in this phase of life,“ says lead author Garvin Brod, formerly at the Max Planck Institute for Human Development, now at the German Institute for International Educational Research (DIPF). The study is part of the “HippoKID” project at the Max Planck Institute for Human Development, and the first neuroscientific longitudinal study examining the effects of school entrance on brain development.

The study’s findings are based on data of 60 children who all were five years old when assessed for the first time. In order to assess changes resulting from school entrance, the tests were repeated after one year. Whereas all of the children were still going to kindergarten at first testing, some of the children were already attending school by the second testing session. On both occasions, the children worked on computerized tests assessing their ability to sustain attention and control their behavior. In addition, the children’s brain activity while performing one such test was measured using magnetic resonance imaging (MRI), a brain imaging technique that is safe for use in children.

Both groups – the kindergarten children and the schoolchildren – improved their attention and the ability to control their behavior. However, the schoolchildren showed a bigger improvement than the kindergarteners. Additionally, they showed a bigger increase in activation of a brain region that is known to be important for sustained attention: right parietal cortex. Moreover, children with a greater increase in parietal activation showed a bigger improvement in control performance. „Our results indicate that the structured learning environment of school has a positive effect on the development of behavioral control,“ states Garvin Brod.

The researchers caution against over-interpreting their findings: „This does not mean that early school entrance is necessarily better for children. We can not answer the question about the right time to start school – this has to remain an individual decision. Each child is different. And we don’t yet know whether the effects are lasting,“ says co-author Yee Lee Shing, principal investigator of the HippoKID Study at the Max Planck Institute for Human Development and now lecturer at the University of Stirling. "But these results demonstrate, for the first time, how environmental context shapes the brain in five-year-olds transitioning into school," adds co-author Silvia Bunge, who works as a Professor at the University of California, Berkeley.


Background information

Original article
Brod, G., Bunge, S. A., & Shing, Y. L. (2017). Does one year of schooling improve children's cognitive control and alter associated brain activation? Psychological Science. Advance online publication. doi:10.1177/0956797617699838

About the study
The study was funded through a Max Planck Minerva Research Group led by Yee Lee Shing. The overarching goal of this group was to better understand the mechanisms through which environmental factors, such as school entry and stress-related social disadvantage, may affect neural and behavioral development. The HippoKID Study longitudinally followed children born close to the cut-off date for school entry who subsequently did or did not enter school that year.

Max Planck Institute for Human Development
The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an
interdisciplinary research institution dedicated to the study of human development and
education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2017/05/starting-school-boosts-developme...

Nicole Siller | Max-Planck-Institut für Bildungsforschung

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>