Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starting school boosts development

11.05.2017

A longitudinal study carried out at the Max Planck Institute for Human Development sheds light on the effects of school entrance on the brain development of children. The findings are published in Psychological Science.

Sitting still, following lessons, resisting distractions by fellow pupils and other enticements – starting school is a challenge for first-year pupils, who have often come from play-oriented kindergarten. However, the structured learning environment of school appears to affect children’s brains rapidly.

Within the first year of school, the ability to concentrate and to control behavior is already better than that of kindergarten children of similar ages. This is the result of a study carried out by researchers at the Max Planck Institute for Human Development and the University of California, Berkeley.

„Between five and seven years of age, children make great leaps and bounds in development, particularly in the ability to control their own behavior. We were interested in finding out whether this is only related to general maturation of the brain or also to school entrance, which often occurs in this phase of life,“ says lead author Garvin Brod, formerly at the Max Planck Institute for Human Development, now at the German Institute for International Educational Research (DIPF). The study is part of the “HippoKID” project at the Max Planck Institute for Human Development, and the first neuroscientific longitudinal study examining the effects of school entrance on brain development.

The study’s findings are based on data of 60 children who all were five years old when assessed for the first time. In order to assess changes resulting from school entrance, the tests were repeated after one year. Whereas all of the children were still going to kindergarten at first testing, some of the children were already attending school by the second testing session. On both occasions, the children worked on computerized tests assessing their ability to sustain attention and control their behavior. In addition, the children’s brain activity while performing one such test was measured using magnetic resonance imaging (MRI), a brain imaging technique that is safe for use in children.

Both groups – the kindergarten children and the schoolchildren – improved their attention and the ability to control their behavior. However, the schoolchildren showed a bigger improvement than the kindergarteners. Additionally, they showed a bigger increase in activation of a brain region that is known to be important for sustained attention: right parietal cortex. Moreover, children with a greater increase in parietal activation showed a bigger improvement in control performance. „Our results indicate that the structured learning environment of school has a positive effect on the development of behavioral control,“ states Garvin Brod.

The researchers caution against over-interpreting their findings: „This does not mean that early school entrance is necessarily better for children. We can not answer the question about the right time to start school – this has to remain an individual decision. Each child is different. And we don’t yet know whether the effects are lasting,“ says co-author Yee Lee Shing, principal investigator of the HippoKID Study at the Max Planck Institute for Human Development and now lecturer at the University of Stirling. "But these results demonstrate, for the first time, how environmental context shapes the brain in five-year-olds transitioning into school," adds co-author Silvia Bunge, who works as a Professor at the University of California, Berkeley.


Background information

Original article
Brod, G., Bunge, S. A., & Shing, Y. L. (2017). Does one year of schooling improve children's cognitive control and alter associated brain activation? Psychological Science. Advance online publication. doi:10.1177/0956797617699838

About the study
The study was funded through a Max Planck Minerva Research Group led by Yee Lee Shing. The overarching goal of this group was to better understand the mechanisms through which environmental factors, such as school entry and stress-related social disadvantage, may affect neural and behavioral development. The HippoKID Study longitudinally followed children born close to the cut-off date for school entry who subsequently did or did not enter school that year.

Max Planck Institute for Human Development
The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an
interdisciplinary research institution dedicated to the study of human development and
education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2017/05/starting-school-boosts-developme...

Nicole Siller | Max-Planck-Institut für Bildungsforschung

More articles from Science Education:

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>