Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-tech trial paves way for innovative science learning in UK

06.07.2006
Leading science centre in UK pioneers new pedagogical concept with cutting-edge augmented reality technology trial

At-Bristol, one of the leading science centres in UK, jump-starts a series of trials today to examine the use of augmented reality (AR) technology to maximise and foster learning of science among pupils. The trial is the first of its kind to be conducted with schools in the United Kingdom, boosting the potential of making significant contributions to the field of science education.

The breakthrough of using AR enhances pupils’ learning by contextualising subject information and personalising the experience to the individual’s exact profile, knowledge level and interests. In addition, it aims to ‘break’ the walls of science centres, and virtually transfer the information-rich environment into the classroom and vice versa. Therefore, learning benefits are maximised in ways difficult to afford by either schools or science centres alone.

“One of the goals of using AR in science learning is to maximize the impact of information that is provided when the motivation of the student is highest. Feedback from the students participating in the trials have been positive, students have shown to grasp the subject better while at the same time enjoying the novel and interactive learning experience.” Says Edel Fletcher, Physical Science Learning Officer.

The series of trial undertaken by At-Bristol seeks to find out the effectiveness of students’ learning on dynamics of lift in flight using AR. Using the functions of AR and an Aerofoil as subject, students are tasked to investigate how the forces involved in flight change as the angle of the wings makes with the oncoming air change.

Signals from students’ interaction with the exhibit will be read by a wearable mobile AR system and explanations of the physical phenomenon of how planes fly based on their interaction are projected virtually to a headpiece via the mobile AR system.

The series of trials is part of At-Bristol’s collaboration with the pan-European CONNECT project that seeks to explore, test, refine and demonstrate an innovative approach that crosscuts the boundaries between schools, museums, research centers (e.g. observatories) and science centres while involving students and teachers in extended episodes of playful learning.

“These trials mark the final phase of the CONNECT project and another positive infant step towards an ambitious comprehensive educational reform, which supports people’s learning in school and out of school. Informal learning is a key precursor to learning and plays a fundamental role in supplementing the formal learning, the key element to this project is to integrate everyday “free-choice” activities with the formal science curriculum” Says Fletcher.

The technology provides an ambient learning environment, which functions in two distinct and equally important educational modes: the museum and the school mode.

In the museum mode, a student sees the real exhibit as well as visual augmentations provided by the educator via the AR system. Through the school mode, students who do not have access to distant museums or science centres can share the experience of a visiting student via a 2-way audio-visual communication channel. The two groups of students can therefore interact with each other via an audio connection.

Mavis Choong | alfa
Further information:
http://www.at-bristol.org.uk

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>