Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-tech trial paves way for innovative science learning in UK

06.07.2006
Leading science centre in UK pioneers new pedagogical concept with cutting-edge augmented reality technology trial

At-Bristol, one of the leading science centres in UK, jump-starts a series of trials today to examine the use of augmented reality (AR) technology to maximise and foster learning of science among pupils. The trial is the first of its kind to be conducted with schools in the United Kingdom, boosting the potential of making significant contributions to the field of science education.

The breakthrough of using AR enhances pupils’ learning by contextualising subject information and personalising the experience to the individual’s exact profile, knowledge level and interests. In addition, it aims to ‘break’ the walls of science centres, and virtually transfer the information-rich environment into the classroom and vice versa. Therefore, learning benefits are maximised in ways difficult to afford by either schools or science centres alone.

“One of the goals of using AR in science learning is to maximize the impact of information that is provided when the motivation of the student is highest. Feedback from the students participating in the trials have been positive, students have shown to grasp the subject better while at the same time enjoying the novel and interactive learning experience.” Says Edel Fletcher, Physical Science Learning Officer.

The series of trial undertaken by At-Bristol seeks to find out the effectiveness of students’ learning on dynamics of lift in flight using AR. Using the functions of AR and an Aerofoil as subject, students are tasked to investigate how the forces involved in flight change as the angle of the wings makes with the oncoming air change.

Signals from students’ interaction with the exhibit will be read by a wearable mobile AR system and explanations of the physical phenomenon of how planes fly based on their interaction are projected virtually to a headpiece via the mobile AR system.

The series of trials is part of At-Bristol’s collaboration with the pan-European CONNECT project that seeks to explore, test, refine and demonstrate an innovative approach that crosscuts the boundaries between schools, museums, research centers (e.g. observatories) and science centres while involving students and teachers in extended episodes of playful learning.

“These trials mark the final phase of the CONNECT project and another positive infant step towards an ambitious comprehensive educational reform, which supports people’s learning in school and out of school. Informal learning is a key precursor to learning and plays a fundamental role in supplementing the formal learning, the key element to this project is to integrate everyday “free-choice” activities with the formal science curriculum” Says Fletcher.

The technology provides an ambient learning environment, which functions in two distinct and equally important educational modes: the museum and the school mode.

In the museum mode, a student sees the real exhibit as well as visual augmentations provided by the educator via the AR system. Through the school mode, students who do not have access to distant museums or science centres can share the experience of a visiting student via a 2-way audio-visual communication channel. The two groups of students can therefore interact with each other via an audio connection.

Mavis Choong | alfa
Further information:
http://www.at-bristol.org.uk

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>