Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-tech trial paves way for innovative science learning in UK

06.07.2006
Leading science centre in UK pioneers new pedagogical concept with cutting-edge augmented reality technology trial

At-Bristol, one of the leading science centres in UK, jump-starts a series of trials today to examine the use of augmented reality (AR) technology to maximise and foster learning of science among pupils. The trial is the first of its kind to be conducted with schools in the United Kingdom, boosting the potential of making significant contributions to the field of science education.

The breakthrough of using AR enhances pupils’ learning by contextualising subject information and personalising the experience to the individual’s exact profile, knowledge level and interests. In addition, it aims to ‘break’ the walls of science centres, and virtually transfer the information-rich environment into the classroom and vice versa. Therefore, learning benefits are maximised in ways difficult to afford by either schools or science centres alone.

“One of the goals of using AR in science learning is to maximize the impact of information that is provided when the motivation of the student is highest. Feedback from the students participating in the trials have been positive, students have shown to grasp the subject better while at the same time enjoying the novel and interactive learning experience.” Says Edel Fletcher, Physical Science Learning Officer.

The series of trial undertaken by At-Bristol seeks to find out the effectiveness of students’ learning on dynamics of lift in flight using AR. Using the functions of AR and an Aerofoil as subject, students are tasked to investigate how the forces involved in flight change as the angle of the wings makes with the oncoming air change.

Signals from students’ interaction with the exhibit will be read by a wearable mobile AR system and explanations of the physical phenomenon of how planes fly based on their interaction are projected virtually to a headpiece via the mobile AR system.

The series of trials is part of At-Bristol’s collaboration with the pan-European CONNECT project that seeks to explore, test, refine and demonstrate an innovative approach that crosscuts the boundaries between schools, museums, research centers (e.g. observatories) and science centres while involving students and teachers in extended episodes of playful learning.

“These trials mark the final phase of the CONNECT project and another positive infant step towards an ambitious comprehensive educational reform, which supports people’s learning in school and out of school. Informal learning is a key precursor to learning and plays a fundamental role in supplementing the formal learning, the key element to this project is to integrate everyday “free-choice” activities with the formal science curriculum” Says Fletcher.

The technology provides an ambient learning environment, which functions in two distinct and equally important educational modes: the museum and the school mode.

In the museum mode, a student sees the real exhibit as well as visual augmentations provided by the educator via the AR system. Through the school mode, students who do not have access to distant museums or science centres can share the experience of a visiting student via a 2-way audio-visual communication channel. The two groups of students can therefore interact with each other via an audio connection.

Mavis Choong | alfa
Further information:
http://www.at-bristol.org.uk

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>