Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-tech trial paves way for innovative science learning in UK

06.07.2006
Leading science centre in UK pioneers new pedagogical concept with cutting-edge augmented reality technology trial

At-Bristol, one of the leading science centres in UK, jump-starts a series of trials today to examine the use of augmented reality (AR) technology to maximise and foster learning of science among pupils. The trial is the first of its kind to be conducted with schools in the United Kingdom, boosting the potential of making significant contributions to the field of science education.

The breakthrough of using AR enhances pupils’ learning by contextualising subject information and personalising the experience to the individual’s exact profile, knowledge level and interests. In addition, it aims to ‘break’ the walls of science centres, and virtually transfer the information-rich environment into the classroom and vice versa. Therefore, learning benefits are maximised in ways difficult to afford by either schools or science centres alone.

“One of the goals of using AR in science learning is to maximize the impact of information that is provided when the motivation of the student is highest. Feedback from the students participating in the trials have been positive, students have shown to grasp the subject better while at the same time enjoying the novel and interactive learning experience.” Says Edel Fletcher, Physical Science Learning Officer.

The series of trial undertaken by At-Bristol seeks to find out the effectiveness of students’ learning on dynamics of lift in flight using AR. Using the functions of AR and an Aerofoil as subject, students are tasked to investigate how the forces involved in flight change as the angle of the wings makes with the oncoming air change.

Signals from students’ interaction with the exhibit will be read by a wearable mobile AR system and explanations of the physical phenomenon of how planes fly based on their interaction are projected virtually to a headpiece via the mobile AR system.

The series of trials is part of At-Bristol’s collaboration with the pan-European CONNECT project that seeks to explore, test, refine and demonstrate an innovative approach that crosscuts the boundaries between schools, museums, research centers (e.g. observatories) and science centres while involving students and teachers in extended episodes of playful learning.

“These trials mark the final phase of the CONNECT project and another positive infant step towards an ambitious comprehensive educational reform, which supports people’s learning in school and out of school. Informal learning is a key precursor to learning and plays a fundamental role in supplementing the formal learning, the key element to this project is to integrate everyday “free-choice” activities with the formal science curriculum” Says Fletcher.

The technology provides an ambient learning environment, which functions in two distinct and equally important educational modes: the museum and the school mode.

In the museum mode, a student sees the real exhibit as well as visual augmentations provided by the educator via the AR system. Through the school mode, students who do not have access to distant museums or science centres can share the experience of a visiting student via a 2-way audio-visual communication channel. The two groups of students can therefore interact with each other via an audio connection.

Mavis Choong | alfa
Further information:
http://www.at-bristol.org.uk

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>