Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kids who blow bubbles find language is child's play

23.06.2006
Youngsters who can lick their lips, blow bubbles and pretend that a building block is a car are most likely to find learning language easy, according to a new study funded by the Economic and Social Research Council (ESRC). Psychologists at Lancaster University, led by Dr Katie Alcock, found strong links between these movement, or motor and thinking, or cognitive, skills and children’s language abilities.

Their study looked at more than 120 children aged 21 months – the time when they are learning new words at a faster rate than at any other stage of their life. It included questionnaires for parents and special tests of motor and cognitive abilities.

Dr Alcock said that an especially interesting finding was that children who were poor at moving their mouths were particularly weak at language skills, while those who were good at these movements had a range of language abilities. She believes that the findings could help child experts identify very early on those youngsters most likely to have problems with their understanding of words and speech in later life.

In experiments, the children were divided into four groups, and those in three of these were given more detailed testing in motor skills, understanding, or language and hearing.

The study found that in each group, some skills had closer relationships to language abilities than others. They also showed different patterns of relationships. For instance, there was no link when it came to easier movements, such as walking and running.

To assess spontaneous speech in a familiar place, researchers recorded everything said by children, and the person looking after them, during a half-hour free play session in each child’s home. This was then analysed in terms of the range of words produced, and the length of sentences.

In a second group, children were assessed on a wide variety of thinking and reasoning skills: working out how to put puzzles together, matching pictures and colours, interacting with an adult to get their attention, and ’pretending’ that one object is another, such as using a block for a car, or a box for a doll’s bed, or giving a doll a tea party.

Children who were good at this were also better at language, but there was no relationship with more general thinking skills, such as doing puzzles.

In another group, children were tested on their ability for instance, to say a new or unfamiliar word or to work out which of two Teletubbies pictures the sound they are hearing goes with.

Children who could say new words an adult asked them to repeat, were best at language. Being able to listen to a new word or a funny sound and work out which picture it went with also distinguished between children with advanced and not so strong abilities.

Dr Alcock said: “We have found links between non-language and language skills in children at a time of very rapid development. We plan to follow-up this study when the children are older, to find out which skills give the best indication of later language abilities and problems.

“We have already examined how much parents talk to their children at home. Now we are also going to look at parents’ levels of education, and the children’s home environments, such as the number of books they have, to see what influences these have.”

Annika Howard | alfa
Further information:
http://www.esrc.ac.uk

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>