Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MISTI helps bring iLabs to China

Undergraduates are at the forefront of MIT's latest efforts to share educational technology with China.

On Tuesday, June 13, students will join MIT faculty at the first Asian MIT-iCampus Conference, an unprecedented effort to introduce China's top universities to iLabs, MIT's free online remote laboratory initiative.

iLabs allows students and educators anywhere to access MIT equipment to conduct science and engineering experiments.

"Universities can share what would ordinarily be extraordinarily expensive equipment, just using the Internet," said Hal Abelson, co-director of the MIT-Microsoft Research Alliance for Educational Technology, and professor of electrical engineering and computer science at MIT.

Thousands of students in Europe, Asia, Africa and the Middle East have used iLabs in their studies, using such equipment as a heat exchanger (which is important in the chemical engineering curriculum) to a shake table (which engineering students can use to study earthquakes).

At the Beijing conference, the MIT faculty who invented iLabs will demonstrate how the shared online laboratories can be integrated in the classroom, and representatives from the MIT-China Program (one of the eight work and study abroad programs organized by MISTI, the MIT International Science and Technology Initiatives) will explain the key role MIT students play in internationalizing iLabs.

A two-day technical workshop will follow for the Chinese universities that want to employ the iLab technology and design their own experiments.

Last summer, a team of undergraduates worked with Chinese students at Tsinghua University in Beijing through MISTI, demonstrating how to set up and access MIT's free online computer science courses, experiments and labs. The team also gathered feedback from the participants about how well the initiative worked within China's educational system.

"It's about introducing people to the technology so they can adopt it and use it themselves," said Scot Frank, a computer science student from Salt Lake City. "There are different teaching methodologies between the two countries but we really learn from each other. It's really collaboration."

MIT students first began working in China's high schools in the mid-1990s to help connect students to the Internet through the China Educational Technology Initiative. In 2004, MISTI used the same classroom model and sent teams of students to introduce OpenCourseWare on the college level in China. Last year four teams of students set up iLabs and iCampus projects at four Chinese universities. This summer, students will work in twice as many schools throughout China.

After the MIT-iCampus conference is over, the MISTI students will stay in China to continue to expand the use of educational technology in dozens of other institutions in China. For the MIT students, it's the ultimate on-the-job learning experience.

"Working internationally teaches you how to communicate with others even with a big difference in culture," said Frank. "It's also getting better at your own learning process since every situation you come into is always going to be different."

iLabs is an initiative of the MIT iCampus program, which is funded by Microsoft Corp. iCampus sponsors faculty innovations in educational technology, helps incubate them through classroom use, and promotes their adoption, evaluation and continued evolution through worldwide multi-institutional cooperation.

Kristen Collins | MIT News Office
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>