Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MISTI helps bring iLabs to China

09.06.2006
Undergraduates are at the forefront of MIT's latest efforts to share educational technology with China.

On Tuesday, June 13, students will join MIT faculty at the first Asian MIT-iCampus Conference, an unprecedented effort to introduce China's top universities to iLabs, MIT's free online remote laboratory initiative.

iLabs allows students and educators anywhere to access MIT equipment to conduct science and engineering experiments.

"Universities can share what would ordinarily be extraordinarily expensive equipment, just using the Internet," said Hal Abelson, co-director of the MIT-Microsoft Research Alliance for Educational Technology, and professor of electrical engineering and computer science at MIT.

Thousands of students in Europe, Asia, Africa and the Middle East have used iLabs in their studies, using such equipment as a heat exchanger (which is important in the chemical engineering curriculum) to a shake table (which engineering students can use to study earthquakes).

At the Beijing conference, the MIT faculty who invented iLabs will demonstrate how the shared online laboratories can be integrated in the classroom, and representatives from the MIT-China Program (one of the eight work and study abroad programs organized by MISTI, the MIT International Science and Technology Initiatives) will explain the key role MIT students play in internationalizing iLabs.

A two-day technical workshop will follow for the Chinese universities that want to employ the iLab technology and design their own experiments.

Last summer, a team of undergraduates worked with Chinese students at Tsinghua University in Beijing through MISTI, demonstrating how to set up and access MIT's free online computer science courses, experiments and labs. The team also gathered feedback from the participants about how well the initiative worked within China's educational system.

"It's about introducing people to the technology so they can adopt it and use it themselves," said Scot Frank, a computer science student from Salt Lake City. "There are different teaching methodologies between the two countries but we really learn from each other. It's really collaboration."

MIT students first began working in China's high schools in the mid-1990s to help connect students to the Internet through the China Educational Technology Initiative. In 2004, MISTI used the same classroom model and sent teams of students to introduce OpenCourseWare on the college level in China. Last year four teams of students set up iLabs and iCampus projects at four Chinese universities. This summer, students will work in twice as many schools throughout China.

After the MIT-iCampus conference is over, the MISTI students will stay in China to continue to expand the use of educational technology in dozens of other institutions in China. For the MIT students, it's the ultimate on-the-job learning experience.

"Working internationally teaches you how to communicate with others even with a big difference in culture," said Frank. "It's also getting better at your own learning process since every situation you come into is always going to be different."

iLabs is an initiative of the MIT iCampus program, which is funded by Microsoft Corp. iCampus sponsors faculty innovations in educational technology, helps incubate them through classroom use, and promotes their adoption, evaluation and continued evolution through worldwide multi-institutional cooperation.

Kristen Collins | MIT News Office
Further information:
http://www.mit.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>