Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making adult language learning child’s play

05.05.2006


A sophisticated new language learning method that uses technology to implement findings from neuroscience aims to be simplicity itself for adult learners.



Mobility within the European Union offers great prospects for both individuals and companies – but doing business in another country only makes sense if you can speak (or quickly learn) the local language. Unfortunately, recent statistics have shown that 51 per cent of EU citizens cannot speak a European language other than their mother tongue – a surprisingly low number given that over 90 per cent of Europeans learn a second language at school.

“The problem is that today’s typical approach to language learning is too intellectual,” explains Ralph Warnke, the coordinator of the IST programme-funded FLIC project behind the courses. Slavishly learning the grammar of a language along ‘la plume de ma tante’ lines does not enable us to speak it, as all too many of us can testify. “Based on our observation of how bilingual children learn languages, we decided to find an easier way for adults to pick up a second tongue,” says Warnke.


Warnke is Managing Director and President of MediTECH, a German company that devised Brain-Boy®, a kind of portable game computer that is a highly effective, technology-enabled way of improving the language abilities of dyslexic children, by training them in eight basic language functions such as pitch discrimination and spatial hearing. “For dyslexics, their own language is like a foreign language,” explains Warnke. “So that got me thinking, why shouldn’t the same approach work with adult language learners?”

FLIC uses a feedback system, equipping learners with a headset (earphones) and microphone, plus a black box (or programme, in the case of the home version), which mixes the sound. When learners begin a FLIC course, they start by reading text while listening to it being pronounced by a model voice in the earphones. Next, they mouth the text while listening to the words (“The brain is working although the voice is silent,” explains Warnke). Step three is actually speaking the words out loud.

Then – and this is the clever part – the system plays back the learner’s efforts in one ear, and the model voice in the other ear. “And it doesn’t stay in the same ear, but moves from ear to ear, so that inter-hemispheric contact is enhanced,” explains Warnke. “Both hemispheres are very important for language learning. The left hemisphere is involved in word recognition, it’s the word processor of the brain; but the right hemisphere rules prosody – a vital decoding process that uncovers non-explicit shades of meaning.”

Using the learner’s own voice aids learning, because research shows that we pay most attention to voices like our own. So, in the next stage, FLIC uses this fact by modifying the model voice, blending it with the learner’s voice, which has been divided into bands and analysed for speed, pitch, and so on using software developed by Stockholm’s KTH, one of the FLIC project’s partners. The resulting voice mimics the learner’s own, yet has the superior pronunciation of the model voice. “When learners hear this, they experience themselves speaking a foreign language much better than they expected,” says Warnke. “They are then happy to keep practising and speaking.”

An innovative use of voice techniques is also used to improve vocabulary retention. Learners hear a word in the target language in one ear, and its meaning in their own language in the other ear, simultaneously. “Again, the words and translations switch between the ears, and so the hemispheres,” says Warnke.

Learners listen and participate in dialogues, picking up the structure of the language by example, without ever having to endure a grammar lesson. “They absorb the rules naturally, which is exactly how small children learn languages,” says Warnke. “FLIC gives people an internal pattern of a language that they don’t get with other systems.”

After three years in development and testing, the FLIC trials are currently being evaluated by the University of Sheffield, UK, and full results are expected in May.

“The testing phase took place in five different sites in three countries: France, Germany and Italy,” explains Warnke. “Beginners, intermediate and advanced groups took courses of between 24 and 48 total hours, while control groups took conventional courses. Preliminary findings indicate that FLIC cuts language learning time by 50 per cent.” Acceptance of the method was high, among both students and teachers. So far, FLIC offers courses in English, German, and Italian, but other languages can easily be added.

Warnke hopes to commercialise the product in the near future, pointing out that its availability as both software and hardware make it suitable for individuals (home users) as well as groups (language schools).

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81625
http://istresults.cordis.lu/

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>