Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK e-Science project wins top supercomputing award

18.11.2005


Issued by EPSRC on behalf of the UK e-Science Programme



A UK e-Science project has won a top award at SC05, the world’s premier supercomputing conference in Seattle this week. SPICE (Simulated Pore Interactive Computing Environment) achieved success in the HPC Analytics Challenge for demonstrating the use of innovative techniques in rigorous data analysis and high-end visualisation to solve a complex, real-world problem.

“SPICE shows how the power of supercomputers on both sides of the Atlantic can be harnessed to simulate and visualise biological processes of unprecedented complexity. We’re delighted with this award,” says Professor Peter Coveney, principal investigator for the SPICE project from University College London.


The SPICE team convinced the judges with their simulation of DNA strands passing through a cell membrane. Knowledge of this important biological process is crucial for understanding the transfer of genetic information during cell division, and for applications such as the design of high-throughput DNA screening devices. However, it takes place over a much longer timescale than is possible to simulate using conventional computational methods.

“Many biological processes take longer than a nanosecond – that’s what makes them so computationally difficult,” says Dr Shantenu Jha, technical lead on the SPICE team.

SPICE uses technology developed under another UK e-Science project, RealityGrid, to marshal the resources of supercomputers on the UK National Grid Service (NGS) and the US TeraGrid, connected by dedicated high bandwidth optical channels. Even with resources of this grid-of-grids to hand, the simulation is too large for straight computation. SPICE has overcome this obstacle by dividing the simulation into two stages.

In the first, the researcher gets a rough “feel” for the DNA’s progress from the response of a haptic device (joystick) used to pull it through a protein nanopore embedded in the cell membrane. “You try to pull the DNA through the pore and you can feel the strain on it. It’s a very smart way of probing the DNA’s local energetic environment – and it’s fun,” says Dr Jha.

In the second stage, insight gained from the first is used to set the parameters for a set of full-scale simulations. “By doing some smart exploration first, we’re limiting the computation we need for a detailed, rigorous analysis,” says Dr Jha.

Such complex simulations would not be possible without the use of dedicated optical networks to connect supercomputers in the US and UK. The researchers steer the simulation in real time via the haptic device, each snapshot of the simulation requiring several hundred processors and simultaneous high-end compute and visualization resources. Standard packet-switched networks, even with high bandwidth, cannot guarantee sufficient quality of service for such interactivity.

“Without dedicated optical networks in the US, UK and across the Atlantic, SPICE would be impossible. There’s no loss or re-ordering of data which means that we can steer the simulations interactively,” says Professor Coveney. SPICE is one of the first demonstrations of the UK’s new dedicated optical research network, UKLight.

SPICE is jointly funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and the US National Science Foundation (NSF) as one component of a bi-national collaboration to exploit state of the art optical (lambda) networks to tackle scientific problems that would otherwise remain out of reach. Two US projects, NeKTAR and VORTRONICS, are using the same infrastructure to simulate blood flow through the entire network of human arteries and to tackle highly computationally-intensive problems in turbulent fluid dynamics.

Judy Redfearn | alfa
Further information:
http://www.realitygrid.org/Spice/
http://www.rcuk.ac.uk/escience
http://sc05.supercomputing.org/about/home.php

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>