Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK e-Science project wins top supercomputing award

18.11.2005


Issued by EPSRC on behalf of the UK e-Science Programme



A UK e-Science project has won a top award at SC05, the world’s premier supercomputing conference in Seattle this week. SPICE (Simulated Pore Interactive Computing Environment) achieved success in the HPC Analytics Challenge for demonstrating the use of innovative techniques in rigorous data analysis and high-end visualisation to solve a complex, real-world problem.

“SPICE shows how the power of supercomputers on both sides of the Atlantic can be harnessed to simulate and visualise biological processes of unprecedented complexity. We’re delighted with this award,” says Professor Peter Coveney, principal investigator for the SPICE project from University College London.


The SPICE team convinced the judges with their simulation of DNA strands passing through a cell membrane. Knowledge of this important biological process is crucial for understanding the transfer of genetic information during cell division, and for applications such as the design of high-throughput DNA screening devices. However, it takes place over a much longer timescale than is possible to simulate using conventional computational methods.

“Many biological processes take longer than a nanosecond – that’s what makes them so computationally difficult,” says Dr Shantenu Jha, technical lead on the SPICE team.

SPICE uses technology developed under another UK e-Science project, RealityGrid, to marshal the resources of supercomputers on the UK National Grid Service (NGS) and the US TeraGrid, connected by dedicated high bandwidth optical channels. Even with resources of this grid-of-grids to hand, the simulation is too large for straight computation. SPICE has overcome this obstacle by dividing the simulation into two stages.

In the first, the researcher gets a rough “feel” for the DNA’s progress from the response of a haptic device (joystick) used to pull it through a protein nanopore embedded in the cell membrane. “You try to pull the DNA through the pore and you can feel the strain on it. It’s a very smart way of probing the DNA’s local energetic environment – and it’s fun,” says Dr Jha.

In the second stage, insight gained from the first is used to set the parameters for a set of full-scale simulations. “By doing some smart exploration first, we’re limiting the computation we need for a detailed, rigorous analysis,” says Dr Jha.

Such complex simulations would not be possible without the use of dedicated optical networks to connect supercomputers in the US and UK. The researchers steer the simulation in real time via the haptic device, each snapshot of the simulation requiring several hundred processors and simultaneous high-end compute and visualization resources. Standard packet-switched networks, even with high bandwidth, cannot guarantee sufficient quality of service for such interactivity.

“Without dedicated optical networks in the US, UK and across the Atlantic, SPICE would be impossible. There’s no loss or re-ordering of data which means that we can steer the simulations interactively,” says Professor Coveney. SPICE is one of the first demonstrations of the UK’s new dedicated optical research network, UKLight.

SPICE is jointly funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and the US National Science Foundation (NSF) as one component of a bi-national collaboration to exploit state of the art optical (lambda) networks to tackle scientific problems that would otherwise remain out of reach. Two US projects, NeKTAR and VORTRONICS, are using the same infrastructure to simulate blood flow through the entire network of human arteries and to tackle highly computationally-intensive problems in turbulent fluid dynamics.

Judy Redfearn | alfa
Further information:
http://www.realitygrid.org/Spice/
http://www.rcuk.ac.uk/escience
http://sc05.supercomputing.org/about/home.php

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>