Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK e-Science project wins top supercomputing award

18.11.2005


Issued by EPSRC on behalf of the UK e-Science Programme



A UK e-Science project has won a top award at SC05, the world’s premier supercomputing conference in Seattle this week. SPICE (Simulated Pore Interactive Computing Environment) achieved success in the HPC Analytics Challenge for demonstrating the use of innovative techniques in rigorous data analysis and high-end visualisation to solve a complex, real-world problem.

“SPICE shows how the power of supercomputers on both sides of the Atlantic can be harnessed to simulate and visualise biological processes of unprecedented complexity. We’re delighted with this award,” says Professor Peter Coveney, principal investigator for the SPICE project from University College London.


The SPICE team convinced the judges with their simulation of DNA strands passing through a cell membrane. Knowledge of this important biological process is crucial for understanding the transfer of genetic information during cell division, and for applications such as the design of high-throughput DNA screening devices. However, it takes place over a much longer timescale than is possible to simulate using conventional computational methods.

“Many biological processes take longer than a nanosecond – that’s what makes them so computationally difficult,” says Dr Shantenu Jha, technical lead on the SPICE team.

SPICE uses technology developed under another UK e-Science project, RealityGrid, to marshal the resources of supercomputers on the UK National Grid Service (NGS) and the US TeraGrid, connected by dedicated high bandwidth optical channels. Even with resources of this grid-of-grids to hand, the simulation is too large for straight computation. SPICE has overcome this obstacle by dividing the simulation into two stages.

In the first, the researcher gets a rough “feel” for the DNA’s progress from the response of a haptic device (joystick) used to pull it through a protein nanopore embedded in the cell membrane. “You try to pull the DNA through the pore and you can feel the strain on it. It’s a very smart way of probing the DNA’s local energetic environment – and it’s fun,” says Dr Jha.

In the second stage, insight gained from the first is used to set the parameters for a set of full-scale simulations. “By doing some smart exploration first, we’re limiting the computation we need for a detailed, rigorous analysis,” says Dr Jha.

Such complex simulations would not be possible without the use of dedicated optical networks to connect supercomputers in the US and UK. The researchers steer the simulation in real time via the haptic device, each snapshot of the simulation requiring several hundred processors and simultaneous high-end compute and visualization resources. Standard packet-switched networks, even with high bandwidth, cannot guarantee sufficient quality of service for such interactivity.

“Without dedicated optical networks in the US, UK and across the Atlantic, SPICE would be impossible. There’s no loss or re-ordering of data which means that we can steer the simulations interactively,” says Professor Coveney. SPICE is one of the first demonstrations of the UK’s new dedicated optical research network, UKLight.

SPICE is jointly funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and the US National Science Foundation (NSF) as one component of a bi-national collaboration to exploit state of the art optical (lambda) networks to tackle scientific problems that would otherwise remain out of reach. Two US projects, NeKTAR and VORTRONICS, are using the same infrastructure to simulate blood flow through the entire network of human arteries and to tackle highly computationally-intensive problems in turbulent fluid dynamics.

Judy Redfearn | alfa
Further information:
http://www.realitygrid.org/Spice/
http://www.rcuk.ac.uk/escience
http://sc05.supercomputing.org/about/home.php

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>