Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preschool children display innate skill with numbers, addition

20.09.2005


Children may be born with some ability to perform basic arithmetic, Harvard research suggests



Psychologists at Harvard University have found that five-year-olds are able to grasp numeric abstractions and arithmetic concepts even without the formal education or language to express this knowledge in words. The discovery of these inborn skills among preschoolers could point the way to new teaching techniques, making arithmetic easier and more pleasant for elementary school children.

A paper describing the findings will be published in the Proceedings of the National Academy of Sciences and is now on the journal’s web site.


"Teaching symbolic arithmetic is one of the primary tasks of the first four years of elementary education," says co-author Elizabeth S. Spelke, a professor of psychology in Harvard’s Faculty of Arts and Sciences. "Some children have enormous trouble mastering this skill, and most children find symbolic arithmetic challenging and, at times, confusing. Our studies say, however, that children already have a basic understanding of this domain. I hope our work points the way to improving mathematics education by building on this understanding."

Spelke and her colleagues asked 16 preschoolers to compare arrays of dots on a computer screen, or to merge two sets of dots and then compare these with a third set. Even without the symbolic knowledge of arithmetic that formal schooling brings, the five-year-olds could consistently tell which sets of dots were larger. Further successful comparisons between arrays of dots and sounds reinforced that the children understood the basic concept of amount.

These skills contrasted sharply with the preschoolers’ ability to comprehend symbolic arithmetic, as is taught in school. For instance, children were unable to answer verbal questions about numerical addition, such as: "Suppose you have 15 marbles and your mom gives you 10 more, while your sister has 20 marbles. Who has more marbles, you or your sister?"

However, the children were able to solve this same problem when it was presented in non-symbolic form, such as an array of 15 blue dots, then a second array of 10 blue dots, and finally a sequence of 20 tones. When asked whether there were more dots or tones, the youngsters were able to give correct answers.

"A fundamental question for psychology is, ’Where do abstract number concepts come from?’" Spelke says. "Some have suggested they come from human language or are constructed by children during formal instruction; our studies provide evidence that children have abstract number concepts, and that they can operate on these concepts to perform addition, before they start school. We conclude that abstract number concepts do not depend either on language or on instruction."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>