Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preschool children display innate skill with numbers, addition

20.09.2005


Children may be born with some ability to perform basic arithmetic, Harvard research suggests



Psychologists at Harvard University have found that five-year-olds are able to grasp numeric abstractions and arithmetic concepts even without the formal education or language to express this knowledge in words. The discovery of these inborn skills among preschoolers could point the way to new teaching techniques, making arithmetic easier and more pleasant for elementary school children.

A paper describing the findings will be published in the Proceedings of the National Academy of Sciences and is now on the journal’s web site.


"Teaching symbolic arithmetic is one of the primary tasks of the first four years of elementary education," says co-author Elizabeth S. Spelke, a professor of psychology in Harvard’s Faculty of Arts and Sciences. "Some children have enormous trouble mastering this skill, and most children find symbolic arithmetic challenging and, at times, confusing. Our studies say, however, that children already have a basic understanding of this domain. I hope our work points the way to improving mathematics education by building on this understanding."

Spelke and her colleagues asked 16 preschoolers to compare arrays of dots on a computer screen, or to merge two sets of dots and then compare these with a third set. Even without the symbolic knowledge of arithmetic that formal schooling brings, the five-year-olds could consistently tell which sets of dots were larger. Further successful comparisons between arrays of dots and sounds reinforced that the children understood the basic concept of amount.

These skills contrasted sharply with the preschoolers’ ability to comprehend symbolic arithmetic, as is taught in school. For instance, children were unable to answer verbal questions about numerical addition, such as: "Suppose you have 15 marbles and your mom gives you 10 more, while your sister has 20 marbles. Who has more marbles, you or your sister?"

However, the children were able to solve this same problem when it was presented in non-symbolic form, such as an array of 15 blue dots, then a second array of 10 blue dots, and finally a sequence of 20 tones. When asked whether there were more dots or tones, the youngsters were able to give correct answers.

"A fundamental question for psychology is, ’Where do abstract number concepts come from?’" Spelke says. "Some have suggested they come from human language or are constructed by children during formal instruction; our studies provide evidence that children have abstract number concepts, and that they can operate on these concepts to perform addition, before they start school. We conclude that abstract number concepts do not depend either on language or on instruction."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>