Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Offering flexible and adaptable mobile learning

06.07.2005


Imagine entering a museum and having information about the artwork at your fingertips or being able to collaborate remotely with fellow students in a university. Those services, and others, are being provided by a new mobile learning environment.



Created by MOBIlearn under the European Commission’s IST programme by 24 partners from Europe, Israel, the United States and Australia, the system breaks new ground in the development of mobile learning, or m-learning, applications that can be used in multiple contexts and scenarios.

“The possible applications of the MOBIlearn system are vast, it can be used anywhere where wireless information and educational content is needed to support the learning process of students, workers or citizens in general,” explains project manager Giancarlo Bo at GIUNTI Interactive Labs in Italy.


Though several m-learning products are on the market, the vast majority of these are “monolithic systems” designed to offer specific educational information in a specific context. “They are only able to provide a select subset of the functionalities that we implemented into MOBIlearn,” Bo notes.

Designed to be flexible and adaptable

MOBIlearn was therefore designed to be used in a variety of contexts, with the partners basing it on a framework to which new functionalities can be added rather than a top-down monolithic system. The result is an architecture that is more flexible and adaptable, leading to a more comprehensive m-learning environment incorporating ambient intelligence that tailors content to the profiles and needs of specific users.

“We didn’t want to simply provide information to users, we wanted the system to support the whole learning process depending on the scenario and the users’ individual needs,” the project manager explains. “In that way they gain a richer and more dynamic educational experience.”

To achieve that goal, MOBIlearn incorporates a selection of different technologies, most of them developed by the project partners, ranging from context and location awareness to content delivery, communication and personalisation.

Applied and well received

Three applications have been developed by the project consortium based on the MOBIlearn architecture. They offer ‘blended learning’ through merging m-learning with traditional education techniques for students and worker training; location-dependent learning to obtain educational resources outside of a classroom; and information, instructions and advice in the context of healthcare and first aid. The applications were tested in Switzerland, Italy and the UK last year.

“For blended learning MBA students at the University of Zurich were given mobile devices and told to perform specific tasks that would require collaboration between them. From different locations, they used the system to cooperate by sharing files, text and video messages about the project they had been given,” Giancarlo Bo explains. “The trials were very successful, the response of students was positive and they particularly liked the collaborative functionality.”

In the UK, the system was employed during a first aid training course with employees of the Open University, who were given different learning tasks that required them to obtain information and follow instructions and advice provided over mobile devices. “Once a user is accustomed to the system they could use it for more than just pre-emptive first aid training such as obtaining instructions in real time in the event of a medical emergency,” the project manager says.

The trial that perhaps best demonstrates the potential of MOBIlearn was conducted in Florence, Italy, with three groups of trial users: Italian secondary school students, foreign students and art experts.

“The users were given mobile phones, PDAs and tablet PCs and visited the Botticelli and Leonardo rooms of the Uffizi Gallery. Their positions within the rooms were tracked through location awareness and the system automatically sent them information about the paintings they were viewing. This information was tailored to the user’s profile and a more detailed history of the artwork was sent to art experts than to secondary school students, for example. Users could also choose to listen to the information or read it, they could also interact with the content, improving the cultural learning experience compared to reading from a traditional paper guidebook,” Bo explains.

Though the three scenarios validated the potential uses of MOBIlearn, they represent just a few of its possible applications.

“It could also be used in industry for maintenance workers to obtain information for specific tasks as and when they need it, and we have also looked at the possibilities for it to be employed by civil defence in crisis management situations such as during a natural disaster,” the project manager says.

Dr Bo, who notes that several consortium members are conducting further trials of the system amid plans to commercialise different components, expects m-learning to take off over the coming years as content providers create more educational content for mobile devices and mobile operators seek to offer new services to clients.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Science Education:

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>