Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Offering flexible and adaptable mobile learning

06.07.2005


Imagine entering a museum and having information about the artwork at your fingertips or being able to collaborate remotely with fellow students in a university. Those services, and others, are being provided by a new mobile learning environment.



Created by MOBIlearn under the European Commission’s IST programme by 24 partners from Europe, Israel, the United States and Australia, the system breaks new ground in the development of mobile learning, or m-learning, applications that can be used in multiple contexts and scenarios.

“The possible applications of the MOBIlearn system are vast, it can be used anywhere where wireless information and educational content is needed to support the learning process of students, workers or citizens in general,” explains project manager Giancarlo Bo at GIUNTI Interactive Labs in Italy.


Though several m-learning products are on the market, the vast majority of these are “monolithic systems” designed to offer specific educational information in a specific context. “They are only able to provide a select subset of the functionalities that we implemented into MOBIlearn,” Bo notes.

Designed to be flexible and adaptable

MOBIlearn was therefore designed to be used in a variety of contexts, with the partners basing it on a framework to which new functionalities can be added rather than a top-down monolithic system. The result is an architecture that is more flexible and adaptable, leading to a more comprehensive m-learning environment incorporating ambient intelligence that tailors content to the profiles and needs of specific users.

“We didn’t want to simply provide information to users, we wanted the system to support the whole learning process depending on the scenario and the users’ individual needs,” the project manager explains. “In that way they gain a richer and more dynamic educational experience.”

To achieve that goal, MOBIlearn incorporates a selection of different technologies, most of them developed by the project partners, ranging from context and location awareness to content delivery, communication and personalisation.

Applied and well received

Three applications have been developed by the project consortium based on the MOBIlearn architecture. They offer ‘blended learning’ through merging m-learning with traditional education techniques for students and worker training; location-dependent learning to obtain educational resources outside of a classroom; and information, instructions and advice in the context of healthcare and first aid. The applications were tested in Switzerland, Italy and the UK last year.

“For blended learning MBA students at the University of Zurich were given mobile devices and told to perform specific tasks that would require collaboration between them. From different locations, they used the system to cooperate by sharing files, text and video messages about the project they had been given,” Giancarlo Bo explains. “The trials were very successful, the response of students was positive and they particularly liked the collaborative functionality.”

In the UK, the system was employed during a first aid training course with employees of the Open University, who were given different learning tasks that required them to obtain information and follow instructions and advice provided over mobile devices. “Once a user is accustomed to the system they could use it for more than just pre-emptive first aid training such as obtaining instructions in real time in the event of a medical emergency,” the project manager says.

The trial that perhaps best demonstrates the potential of MOBIlearn was conducted in Florence, Italy, with three groups of trial users: Italian secondary school students, foreign students and art experts.

“The users were given mobile phones, PDAs and tablet PCs and visited the Botticelli and Leonardo rooms of the Uffizi Gallery. Their positions within the rooms were tracked through location awareness and the system automatically sent them information about the paintings they were viewing. This information was tailored to the user’s profile and a more detailed history of the artwork was sent to art experts than to secondary school students, for example. Users could also choose to listen to the information or read it, they could also interact with the content, improving the cultural learning experience compared to reading from a traditional paper guidebook,” Bo explains.

Though the three scenarios validated the potential uses of MOBIlearn, they represent just a few of its possible applications.

“It could also be used in industry for maintenance workers to obtain information for specific tasks as and when they need it, and we have also looked at the possibilities for it to be employed by civil defence in crisis management situations such as during a natural disaster,” the project manager says.

Dr Bo, who notes that several consortium members are conducting further trials of the system amid plans to commercialise different components, expects m-learning to take off over the coming years as content providers create more educational content for mobile devices and mobile operators seek to offer new services to clients.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>