Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Royal Academy of Engineering to lead National Engineering Programme and support Engineering Higher Education

29.06.2005


A new national initiative set to widen and increase participation in engineering higher education (HE) is to be launched by The Royal Academy of Engineering with funding from the Higher Education Funding Council for England (HEFCE) as part of HEFCE’s forward programme of support for strategically important and vulnerable subjects.



Working with some 85,000 school and university students in seven regions of England, the National Engineering Programme will, over a period of six and a half years, increase the number of new engineering undergraduates by more than 4,000, thereby addressing the UK’s long-term trend of a dropping percentage of HE students in engineering and technology since 1988.

The UK Government has declared an ambition that overall levels of R&D in the economy should reach 2.5% of GDP in ten years. If this is to be achieved in engineering and technology however, what is required is many more than the 17,000 engineering and technology graduates that the current HE system would provide the economy with over that period.


The National Engineering Programme will work in selected neighbourhoods that have low participation rates in HE in order to widen participation in it. It will target four groups currently under-represented: women, minority ethnic students, students from families where there is no experience of HE and adult learners, and thereby secure many more entrants into engineering HE.

Through curriculum enrichment activities in schools, HE institution activities and adult learning initiatives, the programme aims to permanently transform the secondary schools within the programme so that it becomes normal for 50% of students to enter HE, and to permanently alter the nature of HE engineering courses involved in the programme to make them culturally relevant and attractive to a diverse set of students.

The good news doesn’t end there.

The National Engineering Programme represents excellent value for money. This initial £2.85M from HEFCE will begin a process which, over a period of six and a half years, in seven UK regions, could mean that getting a young person from a disadvantaged background through an engineering degree would require only 25% more resource from HEFCE than that required for a more privileged student.

Professor Matthew Harrison of The Royal Academy of Engineering will lead the programme. Matthew says, “The Royal Academy of Engineering is delighted to be leading this exciting new programme: one that both strengthens engineering by bringing in a more diverse pool of students and helps neighbourhoods where participation rates in higher education are low.

The key to our programme is to seek out schools where we haven’t been before and to broker the connection between these schools, local universities offering attractive engineering courses, and local companies wanting to recruit the bright talented engineers of tomorrow.

In this way, we will set out pathways for students with an aptitude for maths and science to claim the benefits of a technical education: benefits to them, their families and the communities they live in.”

The National Engineering Programme will launch its pilot scheme, the London Engineering Project in September bringing together fifteen partner organisations. Professor John Turner, Executive Dean, Faculty of Engineering, Science and the Built Environment, London South Bank University will be the lead academic for the London pilot project.

John says, “At LSBU, we have developed recruitment strategies directed towards a wide range of cultural and socio-economic groups. As we already work with many primary and secondary schools, and FE colleges, throughout London, we are proud to be a founder member of the London Engineering Project, as it forms a key part of LSBU’s strategy for developing our Science, Engineering, Technology & Mathematics (STEM) courses.

The London Engineering Project will allow us to expand and improve our existing Student Ambassador scheme, run by the Widening Participation Unit, and will make it possible for us to work more closely with teachers and school managers. It will also enable us to develop and enlarge our programmes of summer schools, learning festivals and taster days. LSBU’s graduate employment is already noteworthy – on average our graduates achieve the eighth highest starting salary in the country, and our graduate employment rate last year was around 98% in engineering & science. We see the LEP as a vehicle that will help us substantially raise the numbers choosing to embark on a career in engineering & science.”

After undertaking impact assessment, the most effective elements of the London Engineering Project will be rolled out into six other regions – Tyne and Teeside, Humberside, Merseyside, Manchester, Leicester and Nottingham – to form phase 2 of the programme.

The third phase will commence once a critical mass of activity has emerged from phases 1 and 2. This final phase is a nationwide promotion campaign of the benefits of engineering HE and will be the first step towards self-sustainability.

Claire McLoughlin | alfa
Further information:
http://www.raeng.org.uk

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>