Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Royal Academy of Engineering to lead National Engineering Programme and support Engineering Higher Education

29.06.2005


A new national initiative set to widen and increase participation in engineering higher education (HE) is to be launched by The Royal Academy of Engineering with funding from the Higher Education Funding Council for England (HEFCE) as part of HEFCE’s forward programme of support for strategically important and vulnerable subjects.



Working with some 85,000 school and university students in seven regions of England, the National Engineering Programme will, over a period of six and a half years, increase the number of new engineering undergraduates by more than 4,000, thereby addressing the UK’s long-term trend of a dropping percentage of HE students in engineering and technology since 1988.

The UK Government has declared an ambition that overall levels of R&D in the economy should reach 2.5% of GDP in ten years. If this is to be achieved in engineering and technology however, what is required is many more than the 17,000 engineering and technology graduates that the current HE system would provide the economy with over that period.


The National Engineering Programme will work in selected neighbourhoods that have low participation rates in HE in order to widen participation in it. It will target four groups currently under-represented: women, minority ethnic students, students from families where there is no experience of HE and adult learners, and thereby secure many more entrants into engineering HE.

Through curriculum enrichment activities in schools, HE institution activities and adult learning initiatives, the programme aims to permanently transform the secondary schools within the programme so that it becomes normal for 50% of students to enter HE, and to permanently alter the nature of HE engineering courses involved in the programme to make them culturally relevant and attractive to a diverse set of students.

The good news doesn’t end there.

The National Engineering Programme represents excellent value for money. This initial £2.85M from HEFCE will begin a process which, over a period of six and a half years, in seven UK regions, could mean that getting a young person from a disadvantaged background through an engineering degree would require only 25% more resource from HEFCE than that required for a more privileged student.

Professor Matthew Harrison of The Royal Academy of Engineering will lead the programme. Matthew says, “The Royal Academy of Engineering is delighted to be leading this exciting new programme: one that both strengthens engineering by bringing in a more diverse pool of students and helps neighbourhoods where participation rates in higher education are low.

The key to our programme is to seek out schools where we haven’t been before and to broker the connection between these schools, local universities offering attractive engineering courses, and local companies wanting to recruit the bright talented engineers of tomorrow.

In this way, we will set out pathways for students with an aptitude for maths and science to claim the benefits of a technical education: benefits to them, their families and the communities they live in.”

The National Engineering Programme will launch its pilot scheme, the London Engineering Project in September bringing together fifteen partner organisations. Professor John Turner, Executive Dean, Faculty of Engineering, Science and the Built Environment, London South Bank University will be the lead academic for the London pilot project.

John says, “At LSBU, we have developed recruitment strategies directed towards a wide range of cultural and socio-economic groups. As we already work with many primary and secondary schools, and FE colleges, throughout London, we are proud to be a founder member of the London Engineering Project, as it forms a key part of LSBU’s strategy for developing our Science, Engineering, Technology & Mathematics (STEM) courses.

The London Engineering Project will allow us to expand and improve our existing Student Ambassador scheme, run by the Widening Participation Unit, and will make it possible for us to work more closely with teachers and school managers. It will also enable us to develop and enlarge our programmes of summer schools, learning festivals and taster days. LSBU’s graduate employment is already noteworthy – on average our graduates achieve the eighth highest starting salary in the country, and our graduate employment rate last year was around 98% in engineering & science. We see the LEP as a vehicle that will help us substantially raise the numbers choosing to embark on a career in engineering & science.”

After undertaking impact assessment, the most effective elements of the London Engineering Project will be rolled out into six other regions – Tyne and Teeside, Humberside, Merseyside, Manchester, Leicester and Nottingham – to form phase 2 of the programme.

The third phase will commence once a critical mass of activity has emerged from phases 1 and 2. This final phase is a nationwide promotion campaign of the benefits of engineering HE and will be the first step towards self-sustainability.

Claire McLoughlin | alfa
Further information:
http://www.raeng.org.uk

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>