Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In tune with learning music electronically

30.03.2005


When music teachers and students first heard about the IMUTUS interactive tuition many were sceptical about its ability to improve upon traditional learning. Today, evaluation evidence suggests that it has a really strong great potential of making music education more fun, entertaining and effective than ever before.



The result of more than two years of work by music experts and software developers in Greece, Italy, France and Sweden, the IST programme-funded project has created what project coordinator Spyros Raptis describes as “a truly efficient and effective music learning environment which holding much promise for the future”.

Using real-time audio processing and recognition technologies, 3D virtual reality modelling, and evaluation and feedback tools, IMUTUS opens a new interactive world to music students whether they are at home, in the classroom or even taking classes remotely over the Internet.


Complementing traditional teaching

“The aim was not to replace music teachers, as some of them may have feared when we proposed the system, but to create a complementary tool to improve the way students learn music,” Raptis, a researcher at the Institute for Language and Speech Processing in Athens, explains. “The initial scepticism of teachers and the uncertainties of students were soon overcome when they started to use the system, with tutors seeing their students improving faster and the students themselves finding it fun and engaging to use.”

For the purposes of the project the system was targeted at children between the ages of 9 and 14 learning to play the recorder, a wind instrument that is commonly used in schools and conservatories across Europe in the initial stages of music education. The main role of IMUTUS is to help students learn more effectively when they are practicing at home after class, giving them much needed feedback about how they are performing musical scores.

“Whereas students traditionally went home and practiced alone, with IMUTUS their performances are recorded and evaluated in real time, letting them know if they made any errors, where they went wrong and how to correct it,” the coordinator notes.

By loading the software into a normal PC with a microphone, IMUTUS records and recognises what the students are playing, comparing it to uploaded scores presented in XML format. An evaluation module analyses how their performance sounds and offers constructive feedback when they are done playing to improve their interpretation of the score. A three-star overall grading system supplements the detailed feedback and gives appreciated rewards as the performances improves. Using 3D modelling the system incorporates a virtual reality avatar that can play any uploaded score, allowing the student to see where their fingers should be placed.

“We used advanced algorithms as well as score matching and score following to ensure accurate audio recognition and its conversion into MIDI output, which in the case of monophonic instruments such as the recorder is relatively simple,” Raptis says, noting that only minor changes would be needed to use the system with other wind or brass instruments. “Polyphonic instruments such as the piano or the guitar, where many notes are played at the same time, are harder to address.”

Trials underline the benefits

The real benefits of the system come to light when the student returns to the classroom, as two trials at music schools in Stockholm and Florence showed.

In the Swedish evaluation 12 students were divided into six pairs of equal musical ability. One student in each pair used the IMUTUS system for their homework in a controlled environment, while the other did not. “The results were beyond all expectations,” Raptis says. “The students who used IMUTUS returned to class and played with far fewer mistakes than those in the control group. Over the course of a couple of weeks the error rate of those using the system declined much faster than the rest.”

“The improvement was stable across the three weeks and there is a persistent effect on students’ musical skill, even now a month later,” one teacher commented after the tests.

“I am positively overwhelmed that students found IMUTUS such fun. It exceeded my expectations,” said another.

A more subjective approach was taken in the Italian trial, with the teachers themselves asked to evaluate their students’ performance.

Indeed, for students the IMUTUS system provides a more “engaging and entertaining” environment in which to complete their homework, with many students playing scores repeatedly until the evaluation system gave them a three-star mark. “Fun is something that is essential if students are to maintain an interest in what they are learning,” Raptis notes.

With the project having ended in February, the partners are now planning to develop the system further and are looking to carry out more evaluation trials. “We would like to test it with all the students of a music school over a prolonged period of time,” the coordinator says. A mid-term goal is to produce a commercially available software package incorporating the in-home assistant, teaching aids for tutors and Internet connectivity that would allow “a student to learn from a teacher no matter where they are, something that could lead to the creation of a pan-European online music school.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>