Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT Fab Labs Bring "Personal Fabrication" To People Around The World

01.09.2004


Fluorescent pink key chains may not immediately call to mind "high-tech," but for students in Sekondi-Takoradi, Ghana, key chains designed and manufactured by their own hands on modern fabrication tools represents the first link from the high-tech world to the world they live in.


"In our first full week, we had classes filled to capacity in each time slot," said CBA program manager Sherry Lassiter, who helped set up the Ghana fab lab. "What is really lovely to see happens in the evenings when the older students and the children are in the lab together. The older students are very generous with their time and gently teach the small children. Peer to peer training seems to be working quite well." Credit: Amy Sun, Center for Bits and Atoms, MIT



In July and August, a team from MIT’s Center for Bits and Atoms (CBA) deployed its sixth field "fab lab," based on the campus of the Takoradi Technical Institute in the sister cities of Sekondi and Takoradi in Ghana’s southwest corner. Members included CBA program manager Sherry Lassiter, CBA’s director, Neil Gershenfeld, and graduate students Amy Sun and Aisha Walcott.

With about $20,000 worth of equipment, a fab lab is a hands-on laboratory that provides the technology to let people build just about anything from inexpensive and readily available materials. The goal of the fab lab is to help people use advanced information technologies to develop and produce solutions to local problems.


Beyond key chains, the Ghana lab is working on practical projects including antennas and radios for wireless networks and solar-powered machinery for cooking, cooling and cutting. Each of these activities was developed in collaboration with local users, ranging from street children to tribal chiefs, to address the most important local needs.

"End of second week...enthusiasm as seen in [the] first week has not waned but increased," Sun wrote in an e-mail from a local Internet café. "Students are taking [or have] just completed their exams and are coming to the lab begging to take a class or get trained on the equipment. Begging. No, really, actually begging."

The idea for the fab labs arose from CBA research on the ultimate "personal fabricator" -- a machine that can make any machine, including itself -- supported by a "wildly oversubscribed" course at MIT called "How to Make (Almost) Anything," according to Gershenfeld. CBA is exploring the interface between computer science and physical science, funded by a $13.75 million Information Technology Research award from the National Science Foundation (NSF).

"Instead of bringing information technology to the masses, the fab labs bring information technology development to the masses," Gershenfeld said. "For our education and outreach efforts, rather than telling people about what we’re doing, we thought we’d help them do it themselves. We’ve been pulled around the world by the voracious demand we’ve found each time we’ve deployed a fab lab." The fab labs provide an accessible approximation of the tools CBA has on campus, and over time, Gershenfeld said, components of the labs will be replaced with components made in the labs until eventually the fab labs themselves are self-reproducing.

Each fab lab comes equipped with computer-controlled fabrication tools, open-source computer-aided design and manufacturing software and associated electronic components and test equipment. Capabilities include a laser cutter for 2-D and 3-D structures, a sign cutter for plotting interconnects and electromagnetics, a 3-D precision milling machine for applications such as making surface-mount circuit boards and programming tools for low-cost, high-speed embedded microcontrollers.

"We are producing key chains by the pocketful," Sun wrote. "At first blush this might not sound profound; however, most students show up in our lab with zero to very little computer skills. They so desperately want fluorescent pink key chains that they eagerly spend hours in the process."

Besides the lack of computer skills and limited Internet connectivity, the Ghana fab lab highlights other practical challenges in bringing high-tech to developing areas. For example, with humidity near 100 percent and no air conditioning, the cardboard, paper and card stock used to prototype objects turn soggy. And in a country with a 2003 per capita income of $320, even the cheapest of materials can be hard to come by. One of the earliest tasks for Sun was to seek out readily available local supplies, such as veneer wood, coconut tree bark and rubber.

The fab labs around the world use their common capabilities in very different ways. For example, the fab lab that opened in August 2002 at the Vigyan Ashram near Pabal in the western part of Maharashtra, India, has focused on developing agricultural instrumentation. Interests there include testing milk for quality and safety, and tuning diesel engines to run more efficiently, particularly with local biofuels. Another fab lab, in Bithoor in the Indian state of Uttar Pradesh, (operated in cooperation with the Indian Institute of Technology, Kanpur) is targeting 3-D scanning and printing for rural artisans, such as producing the wooden blocks used in Chikan embroidery by women’s cooperatives.

The first international fab lab was established in Cartago, Costa Rica, in July 2002 at the Costa Rica Institute of Technology. There, undergraduates mentor local high-school students as they build tools for local educational, community development and economic challenges. This was followed in June 2003 by a fab lab far above the Arctic Circle in Solvik Gård near Tromsø, Norway. In cooperation with engineers from Norway’s Telenor and Finland’s UPM-Kymmene, that lab is developing wireless networks and animal radio collars to aid nomadic herding.

A delegation from the Norwegian fab lab recently visited the flagship fab lab at Mel King’s South End Technology Center in inner-city Boston to establish a collaboration around their common interest in building community wireless networks. A high point of this visit was the former head of the Sami reindeer herders’ association singing a traditional "joik" (folk song) for the audience at a local restaurant. Future exchanges are planned between these communities.

"The most advanced technologies are needed in some of the least developed places," Gershenfeld said. The Center for Bits and Atoms and its fab labs share the goal of "bringing together the best features of the bits of new digital worlds with the atoms of our physical world."

David Hart | NSF News
Further information:
http://www.nsf.gov
http://cba.mit.edu
http://fab.cba.mit.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>