Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-Life Science In The Lab Of Tomorrow

28.07.2004


A game of soccer, volleyball or basketball may seem like an unconventional way to start a science lesson, but in the Lab of Tomorrow sports and other real-life activities merge with theory to create a new educational environment based on the premise that if playing is fun, learning can be too.



Lab of Tomorrow, a project funded under the European Commission’s IST Programme, developed a family of tiny, programmable devices that can be imbedded in clothing, footballs and other items to monitor the wearer’s heart rate, their running pace or the acceleration of a ball. This practical information can be translated into examples of science theory, raising interest and motivation among students, and improving the learning process.

“For students and teachers it represents a major qualitative upgrade to physics teaching, something that is particularly important at a time when studies show interest in science is declining among students of high school age,” explains project manager Sofoklis Sotiriou at Ellinogermaniki Agogi, a Greek school that is overseeing Lab of Tomorrow’s implementation. “We believe the use of advanced technology keeps the motivation of students high because it connects real-life situations with science. And such motivation would seem an evident result of teachers being able to tell students: ‘wear this, go play and then study what you have done’.”


A ball and vest to aid learning

Designed for use with high school students aged between 15 and 17, the project developed two devices - a ball imbedded with 3D sensors and a wearable computer system called the Sensvest - that were tested in trials in five schools in four European countries.

The ball, for example, can be used to study acceleration, while the Sensvest can measure heart rate, body temperature, and acceleration while walking, running or jumping. In addition a Local Positioning System (LPS) was employed to determine precisely the location and movement of objects. All the devices are wirelessly connected to a base station from where students can collect data via a computer interface in the classroom.

“For example, a student can wear the Sensvest during a lesson, during break, during sports, at home or while sleeping and then come to school the next day and turn the results into a graph showing their heart rate while performing different activities,” Sotiriou notes.

The trials, in which a class of students was provided with the Lab of Tomorrow devices and another class without, acting as a control group, “showed a significant improvement in students’ learning capacity when using the system,” the project manager says. “There was an evident difference between the two groups, with those using the technology showing higher interest and more motivation. It was enthusiastically received by both students and teachers alike.”

Applicable to most European education systems

Most importantly, the educational tools developed by Lab of Tomorrow fit within the often strict curricula of most European education systems.

“There is a practical problem in implementing new technologies in schools because you can’t take a class of 15 and 16 year olds and teach them something that is not in the curriculum, not just because of the reticence of teachers but also of parents,” Sotiriou explains. “What we did therefore was use technology to take a different approach to what is already covered in the schoolbooks.”

Sotiriou notes, however, that the relatively inflexible approach to education in many European countries makes the implementation of technology in the classroom difficult, despite the potential benefits it offers.

“I believe technology in schools should be more widespread than it is now, but unfortunately the teaching community and education ministries are not very good at adapting to change, and if curricula and examination systems remain as strict as they are now most of these innovations will remain in the research phase,” he says. “An integrated approach to technology is needed, and fortunately there are signs of curricula being made more flexible. So there is light at the end of the tunnel.”

The project manager indicates that the Lab of Tomorrow consortium is planning to press European education ministries to incorporate new technologies into education, while at the same time looking at other uses for its own system.

Sotiriou expects a commercial variant of the devices to be ready within two years, given the potential for the Sensvest to be used outside of the educational arena in professional and amateur sports or healthcare.

“Technologically wise we are very happy that we have a product which is very close to the market,” Sotiriou says. “Clearly there is already some work in the field and we have a major interest in seeing this go further. We are preparing a business plan and we’re intending to look at sports equipment companies, such as Adidas or Nike, which can adopt this system because it obviously has a broad application area.”

In professional football, for example, the sensor-embedded ball could be used to clarify disputed goals with mathematical precision, while in healthcare the Sensvest could be used to continuously monitor the heart rate of people with cardiac problems.

Tara Morris | alfa
Further information:
http://www.laboftomorrow.org
http://istresults.cordis.lu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>