Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-Life Science In The Lab Of Tomorrow

28.07.2004


A game of soccer, volleyball or basketball may seem like an unconventional way to start a science lesson, but in the Lab of Tomorrow sports and other real-life activities merge with theory to create a new educational environment based on the premise that if playing is fun, learning can be too.



Lab of Tomorrow, a project funded under the European Commission’s IST Programme, developed a family of tiny, programmable devices that can be imbedded in clothing, footballs and other items to monitor the wearer’s heart rate, their running pace or the acceleration of a ball. This practical information can be translated into examples of science theory, raising interest and motivation among students, and improving the learning process.

“For students and teachers it represents a major qualitative upgrade to physics teaching, something that is particularly important at a time when studies show interest in science is declining among students of high school age,” explains project manager Sofoklis Sotiriou at Ellinogermaniki Agogi, a Greek school that is overseeing Lab of Tomorrow’s implementation. “We believe the use of advanced technology keeps the motivation of students high because it connects real-life situations with science. And such motivation would seem an evident result of teachers being able to tell students: ‘wear this, go play and then study what you have done’.”


A ball and vest to aid learning

Designed for use with high school students aged between 15 and 17, the project developed two devices - a ball imbedded with 3D sensors and a wearable computer system called the Sensvest - that were tested in trials in five schools in four European countries.

The ball, for example, can be used to study acceleration, while the Sensvest can measure heart rate, body temperature, and acceleration while walking, running or jumping. In addition a Local Positioning System (LPS) was employed to determine precisely the location and movement of objects. All the devices are wirelessly connected to a base station from where students can collect data via a computer interface in the classroom.

“For example, a student can wear the Sensvest during a lesson, during break, during sports, at home or while sleeping and then come to school the next day and turn the results into a graph showing their heart rate while performing different activities,” Sotiriou notes.

The trials, in which a class of students was provided with the Lab of Tomorrow devices and another class without, acting as a control group, “showed a significant improvement in students’ learning capacity when using the system,” the project manager says. “There was an evident difference between the two groups, with those using the technology showing higher interest and more motivation. It was enthusiastically received by both students and teachers alike.”

Applicable to most European education systems

Most importantly, the educational tools developed by Lab of Tomorrow fit within the often strict curricula of most European education systems.

“There is a practical problem in implementing new technologies in schools because you can’t take a class of 15 and 16 year olds and teach them something that is not in the curriculum, not just because of the reticence of teachers but also of parents,” Sotiriou explains. “What we did therefore was use technology to take a different approach to what is already covered in the schoolbooks.”

Sotiriou notes, however, that the relatively inflexible approach to education in many European countries makes the implementation of technology in the classroom difficult, despite the potential benefits it offers.

“I believe technology in schools should be more widespread than it is now, but unfortunately the teaching community and education ministries are not very good at adapting to change, and if curricula and examination systems remain as strict as they are now most of these innovations will remain in the research phase,” he says. “An integrated approach to technology is needed, and fortunately there are signs of curricula being made more flexible. So there is light at the end of the tunnel.”

The project manager indicates that the Lab of Tomorrow consortium is planning to press European education ministries to incorporate new technologies into education, while at the same time looking at other uses for its own system.

Sotiriou expects a commercial variant of the devices to be ready within two years, given the potential for the Sensvest to be used outside of the educational arena in professional and amateur sports or healthcare.

“Technologically wise we are very happy that we have a product which is very close to the market,” Sotiriou says. “Clearly there is already some work in the field and we have a major interest in seeing this go further. We are preparing a business plan and we’re intending to look at sports equipment companies, such as Adidas or Nike, which can adopt this system because it obviously has a broad application area.”

In professional football, for example, the sensor-embedded ball could be used to clarify disputed goals with mathematical precision, while in healthcare the Sensvest could be used to continuously monitor the heart rate of people with cardiac problems.

Tara Morris | alfa
Further information:
http://www.laboftomorrow.org
http://istresults.cordis.lu

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>