Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Real-Life Science In The Lab Of Tomorrow


A game of soccer, volleyball or basketball may seem like an unconventional way to start a science lesson, but in the Lab of Tomorrow sports and other real-life activities merge with theory to create a new educational environment based on the premise that if playing is fun, learning can be too.

Lab of Tomorrow, a project funded under the European Commission’s IST Programme, developed a family of tiny, programmable devices that can be imbedded in clothing, footballs and other items to monitor the wearer’s heart rate, their running pace or the acceleration of a ball. This practical information can be translated into examples of science theory, raising interest and motivation among students, and improving the learning process.

“For students and teachers it represents a major qualitative upgrade to physics teaching, something that is particularly important at a time when studies show interest in science is declining among students of high school age,” explains project manager Sofoklis Sotiriou at Ellinogermaniki Agogi, a Greek school that is overseeing Lab of Tomorrow’s implementation. “We believe the use of advanced technology keeps the motivation of students high because it connects real-life situations with science. And such motivation would seem an evident result of teachers being able to tell students: ‘wear this, go play and then study what you have done’.”

A ball and vest to aid learning

Designed for use with high school students aged between 15 and 17, the project developed two devices - a ball imbedded with 3D sensors and a wearable computer system called the Sensvest - that were tested in trials in five schools in four European countries.

The ball, for example, can be used to study acceleration, while the Sensvest can measure heart rate, body temperature, and acceleration while walking, running or jumping. In addition a Local Positioning System (LPS) was employed to determine precisely the location and movement of objects. All the devices are wirelessly connected to a base station from where students can collect data via a computer interface in the classroom.

“For example, a student can wear the Sensvest during a lesson, during break, during sports, at home or while sleeping and then come to school the next day and turn the results into a graph showing their heart rate while performing different activities,” Sotiriou notes.

The trials, in which a class of students was provided with the Lab of Tomorrow devices and another class without, acting as a control group, “showed a significant improvement in students’ learning capacity when using the system,” the project manager says. “There was an evident difference between the two groups, with those using the technology showing higher interest and more motivation. It was enthusiastically received by both students and teachers alike.”

Applicable to most European education systems

Most importantly, the educational tools developed by Lab of Tomorrow fit within the often strict curricula of most European education systems.

“There is a practical problem in implementing new technologies in schools because you can’t take a class of 15 and 16 year olds and teach them something that is not in the curriculum, not just because of the reticence of teachers but also of parents,” Sotiriou explains. “What we did therefore was use technology to take a different approach to what is already covered in the schoolbooks.”

Sotiriou notes, however, that the relatively inflexible approach to education in many European countries makes the implementation of technology in the classroom difficult, despite the potential benefits it offers.

“I believe technology in schools should be more widespread than it is now, but unfortunately the teaching community and education ministries are not very good at adapting to change, and if curricula and examination systems remain as strict as they are now most of these innovations will remain in the research phase,” he says. “An integrated approach to technology is needed, and fortunately there are signs of curricula being made more flexible. So there is light at the end of the tunnel.”

The project manager indicates that the Lab of Tomorrow consortium is planning to press European education ministries to incorporate new technologies into education, while at the same time looking at other uses for its own system.

Sotiriou expects a commercial variant of the devices to be ready within two years, given the potential for the Sensvest to be used outside of the educational arena in professional and amateur sports or healthcare.

“Technologically wise we are very happy that we have a product which is very close to the market,” Sotiriou says. “Clearly there is already some work in the field and we have a major interest in seeing this go further. We are preparing a business plan and we’re intending to look at sports equipment companies, such as Adidas or Nike, which can adopt this system because it obviously has a broad application area.”

In professional football, for example, the sensor-embedded ball could be used to clarify disputed goals with mathematical precision, while in healthcare the Sensvest could be used to continuously monitor the heart rate of people with cardiac problems.

Tara Morris | alfa
Further information:

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>