Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRSA and other healthcare associated infections to be tackled with new £4.2m project

16.07.2008
A new £4.2 million consortium to tackle healthcare associated infections, such as MRSA and Clostridium difficile, is announced today.

Just over 8% of all hospital inpatients in England develop a healthcare associated infection, with this figure rising to 23% in intensive care units. Preventing and controlling the transmission of infection is a key priority for those involved in healthcare.

Led by researchers from Imperial College London, the new London consortium will look at healthcare associated infections from a wide range of angles, from exploring the molecular makeup of bacteria to addressing how best to bring about changes in practice across healthcare.

Its projects will span from springing into action if a particularly virulent strain of MRSA emerges, analysing its particular signature so it can be quickly detected and controlled, to finding the best ways to change the habits of hospital staff, patients and visitors to prevent infections from occurring and spreading.

The new initiative is one of two announced today by the UK Clinical Research Collaboration and it comprises Imperial College London, Imperial College Healthcare NHS Trust and the Health Protection Agency (HPA). One of its key aims is to ensure that benefits from the research reach patients as quickly and effectively as possible.

Dr Alison Holmes, co-lead on the project, is the Director of Infection Control and Prevention at Imperial College Healthcare NHS Trust and a researcher in the Division of Investigative Science at Imperial College London. Dr Holmes explained:

“It’s vital that we carry out basic science to gain a better understanding of existing infections and newly emerging strains, and that we identify the very best ways to fight them. However, it’s only through figuring out how to make people change their habits and practices across our hospitals and the wider healthcare community that we can improve the picture across the UK.

“This is a crucial part of our new project – to ensure that we’re not just coming up with great new ideas, we’re making sure they become part of practice on the wards and in how we manage our hospitals,” added Dr Holmes.

At the laboratory level, the researchers aim to use state of the art molecular tools in order to answer some of the most pressing questions about healthcare associated infection. For example, if a particularly virulent strain of an infection such as MRSA emerges, researchers will set to work to explore how this differs in its genetic and protein makeup from other strains. They then aim to develop a test that hospitals can use to detect the strain so they can prevent it infecting their patients.

They will also look at issues such as how easily the bacteria can be transmitted, by tagging individual bugs with bioluminescence to see how they cross between hospital equipment such as latex gloves and identify the best strategies for preventing such spread.

Another strand of the project will involve healthcare management experts from Imperial College’s Tanaka Business School to explore how to change the behaviour of individuals and whole organisations in the NHS, so that new innovations are adopted rapidly and best practice is embedded and sustained.

Researchers will also be exploring the most effective messages to encourage everyone, from senior consultants to cleaning staff, to prevent infection, improve antibiotic practice and take the relevant steps to keep infection under control. Another part of the project will investigate how to better educate pharmacists about countering resistance to antibiotics.

The researchers will also be looking at how the NHS can use existing and new data to analyse infections at every level, from whole UK regions to individual hospital wards, in order to reveal where there are particular infection problems and explore the causes behind these and target action at the earliest opportunity.

Professor Steve Smith, Principal of the Faculty of Medicine at Imperial College London and Chief Executive of Imperial College Healthcare NHS Trust, said: "All of us involved in running hospitals want to make sure that our patients receive the best possible care and a key aspect of this is making sure we minimise their risk of contracting an infection.

"As the UK's first Academic Health Science Centre, Imperial College London and Imperial College Healthcare NHS Trust are in the perfect position to not only research the best ways of tackling these infections, but to make sure patients see their care improving in our own hospitals and across the UK as a result of our academic work," added Professor Smith.

Spread over five years, the £4.2m funding will enable Imperial College to create nine new PhD fellows specialising in a range of fields addressing infection prevention, from organisational development and behaviour; to epidemiology, surveillance and modelling; to bacterial genetics, molecular typing and pathogenesis.

New appointments will include three post doctoral researchers, a consultant-level infectious diseases pharmacist, a consultant level infection control nurse, an academic manager and an education lead who will oversee research and development in the multi professional education and training programme.

The HPA will also be funding the development of an HPA centre linked to the consortium at Imperial College Healthcare NHS Trust, which will provide two new posts.

The new award is jointly made by the Biotechnology and Biological Sciences Research Council, Medical Research Council, National Institute for Health Research and the Wellcome Trust.

This is the first round of funding awarded under a UK Clinical Research Collaboration joint initiative. The initiative was set up to bring together new multi-disciplinary research groups focused on high quality collaborative research addressing national priorities in the field of microbiology and infection.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>