Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eindhoven University of Technology starts Institute for Complex Molecular Systems

27.03.2008
Researchers from a wide range of disciplines at Eindhoven University of Technology (TU/e) will be joining forces in the Institute for Complex Molecular Systems (ICMS).

They will be investigating the exact mechanism behind self-organization, the principle behind all life on earth. Researchers plan to use this knowledge to build molecular mini-factories that could produce the next generation of catalysts, photosynthetic systems, nanocontainers and functional materials.

Prof. Bert Meijer will head the institute. The Executive Board of the university decided last week to allocate 15 million euros to the institute over the next 10 years.

Looking to nature as a model, TU/e scientists and engineers from the fields of mathematics, chemistry, physics and biology are taking on a tremendous challenge: to force a breakthrough in research into self-assembly among molecules. This is the next step toward manufacturing complex functional systems. Given the enormous possibilities afforded by nanoscience and microtechnology, researchers should be able to regulate the interactions between molecules such that the right molecular complex is formed. It is a highly complicated system where chemical and physical phenomena on different time and length scales come together.

Variety of disciplines

A group of renowned TU/e scientists is founding ICMS to meet this challenge. Professors Bert Meijer, Rutger van Santen, Mark Peletier and Jaap Schouten come from various backgrounds and will be devoting their energy to assembling complex molecular systems. Down the line, they will be joined by other TU/e researchers and newly recruited young researchers. More specifically, they will be examining the extent to which molecular self-organization can be controlled to take on functions as new catalysts, photosynthetic systems, and nanocontainers for biomedical applications. In the process, the institute will focus on several of the well-known research strengths at TU/e, and this line of research will further strengthen the university’s international standing.

Lively discussion

The institute itself is establishing an Advanced Study Center on the topic of complexity. The center will provide a forum for leading researchers from different disciplines to ponder complex problems over an extended period of time. It is hoped that lively discussion will produce unorthodox technological solutions to challenges facing society. In fact, it is precisely at times when specialists from different backgrounds work together that breakthroughs happen. The center will also be setting up a video studio to document the world of cells and complex molecular systems in dynamic moving images, allowing a much better understanding of this complex material.

The TU/e Executive Board is investing 15 million euros in the institute over the next 10 years, which illustrates just how vital research into molecular systems is.

Jim Heirbaut | alfa
Further information:
http://www.tue.nl

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>