Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major European Project to Create New Knowledge Base of Gene-Disease Relationships

22.01.2008
The 12 Million Euro ‘GEN2PHEN’ project, funded by the European Commission, aims to harness the web to capture and unify genetic information that fundamentally impacts on a person’s health and disease processes.

As the heart of this, a large integrated genetic variation catalogue will be built to arm researchers with valuable information in the battle against disorders like diabetes, obesity, heart disease and cancer.

Lead scientist Professor Anthony Brookes, of the University of Leicester’s world-renowned Department of Genetics, said: “Technologies for the exploration of genetic variation in ‘common’ disorders such as diabetes, heart disease, obesity, and autoimmune states, have only been devised the last few years, with widespread deployment only now happening. An unprecedented torrent of exciting, valuable, and important research observations is therefore now arriving, and yet there is no universal internet-ready system able to receive all these data, to store and combine them, and to make them available for researchers and doctors alike to evaluate and exploit.

“It has been estimated that 60% of all humans will be affected in their lifetime by one or more ‘major’ gene mutations that they inherit in their DNA. Major gene mutations that cause disease were first discovered in 1949, although it has only been possible to identify these in large numbers in recent decades. Moreover, myriad ‘minor’ genetic variations that we carry from birth, and which distinguish individuals, will fundamentally influence a person’s health and susceptibility or resistance to disease processes, in interaction with environmental factors. Cancer brings an additional consideration, with its onset and progression being highly dependant upon genetic changes that occur in our bodies during our lives.”

The GEN2PHEN project plans to internationally orchestrate the electronic gathering and use of data that show how gene sequences (‘genotypes’) contribute to inter-individual differences in disease, drug response, and other characteristics (‘phenotypes’). These relationships (usually in the form of “genotype-phenotype” information stored in scattered databases) are deemed to become essential for future prognosis, diagnosis and treatment of diseases.

GEN2PHEN will build a set of database components, tools and technologies that will help all research results pertaining to genome variation and disease to be properly integrated and immediately available for holistic analysis via the internet. The project will deploy a major internet portal, called the “GEN2PHEN Knowledge Centre”, which will prominently profile the solutions generated by the project and set these in the context of powerful search capabilities for genotype-phenotype data and the very latest expertise on genotype-phenotype databases.

Professor Brookes said: “The progress made should provide maximal utility with global relevance, be highly durable, ensure effective education and training in the field, and meet with the highest possible standards of ethical and social responsibility.

“The various GEN2PHEN project members bring with them deep connections into the few other major international projects in this area, promising globally-coordinated progress over the next few years towards far more comprehensive, useful, and accessible knowledge regarding the genetic basis of human existence. The medical and societal benefits from all of this should be immense.”

Specific project activities will include:

Analysis of the genotype-phenotype field, to specify current needs and practices

Development of key standards for the genotype-phenotype field

Analysis of ethical aspects that need to be addressed regarding the managed data

Creation of generic database components, services and integration infrastructures for the genotype-phenotype domain

Creation of data search and presentation solutions for genotype-phenotype knowledge

Facilitation of the transfer of data into research and diagnostic genotype-phenotype databases

Building a major genotype-phenotype internet portal (a ‘knowledge domain’)

Deployment of genotype-phenotype solutions to the community
Innovative ways to address system durability and long-term financing
Repeated system utility and validation pilots
The initiative - called Genotype-To-Phenotype Databases: A Holistic Solution (or ‘GEN2PHEN’ for short) - will be led by Professor Anthony Brookes at the University of Leicester (UK), and executed by 19 leading research institutions, including 17 European, one Indian and one South African institutes. The project is funded with 12 Million Euro awarded by the European Commission following a competitive call targeting this area of research in the recently initiated 7th Framework Programme for research and technological development.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>