Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Real Science in Virtual School Labs

Up-to-date marine data enables students to carry out scientifically valid virtual experiments. The method yields insights on how scientific knowledge is created and developed, according to research from the University of Gothenburg, Sweden.

Researchers from the University of Gothenburg followed upper-secondary students from the Swedish town of Lysekil for one year. The study was part of the research project I2I, Inquiry to Insight.

Using scientific data provided by the marine researchers involved in the project, the students explored the marine environment of the Gullmar Fjord on the Swedish west coast. The students used a virtual ocean acidification lab to conduct studies on acidification of the marine environment, studies with impressive validity based on the latest authentic data.

The method of using virtual tools has a high level of applicability and can be used in a wide range of learning situations, within both the natural and social sciences. The main point of using the method is that it makes students truly understand how scientific knowledge is created.

‘It’s a fast, safe and cheap way to get the work done, in contrast to expensive and sometimes dangerous science labs in schools. It’s based on authentic research results that the students can compare with their own results. The experiments allow students to for example simulate the future, and they can stop what they’re doing at the end of a class and pick up where they left off a week later. That’s perfect in a school context,’ says Senior Lecturer Annika Lantz-Andersson.

The Gothenburg researchers believe that the methods used in Lysekil could work well on a national scale thanks to the ample access to scientific data and cheap virtual tools.

The project partners at Stanford University in USA assessed the knowledge levels of more than 500 students before and after using the virtual lab. Their results enabled the researchers in Gothenburg to study how the students developed an understanding of scientific work and concepts. Now the researchers are trying to learn more concretely how virtual lab students work to find answers and discuss how studies and experiments should be designed to yield new knowledge. This work is based on about 25 hours of video-taped student interaction in the lab environment.

One conclusion that confirms previous research on digital tools is that the work of the teacher is extremely critical to successful learning.

‘The way that the teacher introduces a lab session is crucial, and it is important to realise that computer software is not by any means self-instructive. The teacher needs to actively challenge the students’ understanding and give them a chance to ponder over what the virtual experiments are meant to represent. The teacher’s communication with the students is very important in order to avoid that the virtual experiments end up being just another abstract computer task,’ says Lantz-Andersson.

For more information please contact:
Senior Lecturer Annika Lantz-Andersson, Department of Education, Communication and Learning
Telephone: +46 (0)31–786 2275
Mobile: +46 (0)705 464 755
Personal webpage:
Project Coordinator: Géraldine Fauville, The Sven Lovén Centre for Marine Sciences
Telephone: +46 (0)31 786 95 18
Personal webpage:

Helena Aaberg | idw
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>