Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How you practice matters for learning a skill quickly

07.01.2014
Practice alone doesn't make perfect, but learning can be optimized if you practice in the right way, according to new research based on online gaming data from more than 850,000 people.

The research, led by psychological scientist Tom Stafford of the University of Sheffield (UK), suggests that the way you practice is just as important as how often you practice when it comes to learning quickly.

The new findings are published in Psychological Science, a journal of the Association for Psychological Science.

Stafford and Michael Dewar from The New York Times Research and Development Lab analyzed data from 854,064 people playing an online game called Axon. Players are tasked with guiding a neuron from connection to connection by clicking on potential targets, testing participants' ability to perceive, make decisions, and move quickly.

Stafford and Dewar were interested to know how practice affected players' subsequent performance in the game.

Some Axon players achieved higher scores than others despite practicing for the same amount of time. Game play data revealed that those players who seemed to learn more quickly had either spaced out their practice or had more variable early performance — suggesting they were exploring how the game works — before going on to perform better.

"The study suggests that learning can be improved — you can learn more efficiently or use the same practice time to learn to a higher level," says Stafford. "As we live longer, and as more of our lives become based around acquiring complex skills, optimal learning becomes increasingly relevant to everyone."

Using data collected from people playing games offers a new way for researchers to study learning, and has strong advantages compared to research on learning that is based in the lab. Game data provide insight into a real skill that people presumably enjoy practicing, and detailed data regarding all actions that players take as they learn to play are easily recorded.

"This kind of data affords us to look in an unprecedented way at the shape of the learning curve, allowing us to explore how the way we practice helps or hinders learning," says Stafford.

Stafford hopes to collaborate with game designers to further investigate the factors that shape optimal learning.

For more information about this study, please contact: Tom Stafford at t.stafford@shef.ac.uk.

The article abstract is available online: http://pss.sagepub.com/content/early/2013/12/30/0956797613511466.abstract

Axon was developed for the Wellcome Trust by game designer Preloaded. The game can be played http://axon.wellcomeapps.com/. Researchers inserted a tracking code that recorded machine identity each time the game was loaded and kept track of the score and the date and time of play. No information on the players, other than their game scores, was collected.

Stafford and Dewar have made their data and analysis code publicly available for anyone who wishes to replicate or conduct their own analyses.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Tracing the Trajectory of Skill Learning With a Very Large Sample of Online Game Players" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>