Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How you practice matters for learning a skill quickly

07.01.2014
Practice alone doesn't make perfect, but learning can be optimized if you practice in the right way, according to new research based on online gaming data from more than 850,000 people.

The research, led by psychological scientist Tom Stafford of the University of Sheffield (UK), suggests that the way you practice is just as important as how often you practice when it comes to learning quickly.

The new findings are published in Psychological Science, a journal of the Association for Psychological Science.

Stafford and Michael Dewar from The New York Times Research and Development Lab analyzed data from 854,064 people playing an online game called Axon. Players are tasked with guiding a neuron from connection to connection by clicking on potential targets, testing participants' ability to perceive, make decisions, and move quickly.

Stafford and Dewar were interested to know how practice affected players' subsequent performance in the game.

Some Axon players achieved higher scores than others despite practicing for the same amount of time. Game play data revealed that those players who seemed to learn more quickly had either spaced out their practice or had more variable early performance — suggesting they were exploring how the game works — before going on to perform better.

"The study suggests that learning can be improved — you can learn more efficiently or use the same practice time to learn to a higher level," says Stafford. "As we live longer, and as more of our lives become based around acquiring complex skills, optimal learning becomes increasingly relevant to everyone."

Using data collected from people playing games offers a new way for researchers to study learning, and has strong advantages compared to research on learning that is based in the lab. Game data provide insight into a real skill that people presumably enjoy practicing, and detailed data regarding all actions that players take as they learn to play are easily recorded.

"This kind of data affords us to look in an unprecedented way at the shape of the learning curve, allowing us to explore how the way we practice helps or hinders learning," says Stafford.

Stafford hopes to collaborate with game designers to further investigate the factors that shape optimal learning.

For more information about this study, please contact: Tom Stafford at t.stafford@shef.ac.uk.

The article abstract is available online: http://pss.sagepub.com/content/early/2013/12/30/0956797613511466.abstract

Axon was developed for the Wellcome Trust by game designer Preloaded. The game can be played http://axon.wellcomeapps.com/. Researchers inserted a tracking code that recorded machine identity each time the game was loaded and kept track of the score and the date and time of play. No information on the players, other than their game scores, was collected.

Stafford and Dewar have made their data and analysis code publicly available for anyone who wishes to replicate or conduct their own analyses.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Tracing the Trajectory of Skill Learning With a Very Large Sample of Online Game Players" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>