Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powering up for new HIPIMS research centre

27.07.2010
Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

A machine which pumps out power pulses with the same intensity as a lightning bolt has helped strike up another important relationship - the launch of an international research centre by UK and German scientists.

Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

Sheffield Hallam, which pioneered HIPIMS - High Power Impulse Magnetron Sputtering - in 2001, launched the new research centre at the 1st International Conference on HIPIMS held in the city earlier this month.

The conference was a success in itself, attracting more than 120 of the top scientists and industrialists in the field of HIPIMS.

Dr Arutiun Ehiasarian, director of the HIPIMS Research Centre at Sheffield Hallam, said: "Sheffield Hallam and Fraunhofer are the pioneers in HIPIMS and this new centre will help to implement this process in industry across the world.

"By establishing a common philosophy and working processes, we can explore the full potential of HIPIMS in developing coatings applications for the aerospace and automotive industries, as well as functional coatings and microelectronics research."

The HIPIMS process can help in the manufacture of a range of products from jet engines to knee joints by pumping out an eight mega watt of electrical impulses that create a plasma to improve coatings.

International companies are queuing up to work with the new research centre, which will be based at Sheffield Hallam, to develop better performing coatings for jet turbines, microelectronics, space satellites, photovoltaics, titanium-framed spectacles and tea cups.

Fraunhofer IST, which has expertise in developing tribological, optical, electronic, and sensor coatings, were in Sheffield to launch the research centre on July 6 and 7 this year.

Professor Günter Bräuer, director of Fraunhofer IST said: "Joining up resources from Sheffield Hallam and Fraunhofer IST creates a worldwide unique Competence Centre for innovative sputter processes.”

Professor Mike Smith, pro vice chancellor for research and knowledge transfer at Sheffield Hallam, said: "This new research centre cements a long and successful collaboration between Sheffield Hallam and Fraunhofer to expand our research and understanding of the HIPIMS process.

"This leap forward will help lead to replacement knee and hip joints becoming longer-lasting, and to jet engines performing at a higher temperature and with greater efficiency."

Contacts

Sheffield Hallam University, UK: Laurie Harvey, pressoffice@shu.ac.uk;
Fraunhofer Institute for Surface Engineering and Thin Films IST, Germany: Dr. Simone Kondruweit, simone.kondruweit@ist.fraunhofer.de

Dr. Simone Kondruweit | idw
Further information:
http://www.ist.fraunhofer.de
http://www.shu.ac.uk/news

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>