Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn State Receives $13.2M for Nanoscale Science Center

02.10.2008
The National Science Foundation (NSF) has awarded Penn State University $13.2 million over six years to continue the research and educational activities of its Center for Nanoscale Science, a Materials Research Science and Engineering Center (MRSEC).

“The goal of the Center is to design and create new materials with unprecedented properties and functions, starting with nanometer-scale building blocks,” says Thomas Mallouk, DuPont Professor of Materials Chemistry and Physics at Penn State and Director of the MRSEC.

Nationally, there are 27 such centers supported by NSF, each with a different technical focus. Universities compete for MRSEC funding every three years. In the current competition, Penn State and 13 other universities were selected for funding from among 100 universities that had submitted proposals.

“Penn State has a long history of excellence in materials research.” Mallouk says. “With over 200 faculty who are active in the field, Penn State has the depth of expertise and the outstanding facilities that are needed to make headway on a range of important problems. In this Center, we do not work on problems that could be solved by one or two of us. We go after the big ones that really require an interdisciplinary team with complementary skills.”

The Penn State MRSEC involves 42 faculty and over 50 students from eleven academic departments and institutes at Penn State, as well as collaborators from six other universities. The research of the faculty and students is integrated with a broad educational outreach program that involves the Franklin Institute, a science museum in Philadelphia. MRSEC researchers have collaborations with several national laboratories and also extensive international collaborations. The MRSEC is also affiliated with companies that are seeking to commercialize the results of the Center’s research. An essential component of MRSEC projects, especially those that translate to nanotechnology and energy technologies, has been ongoing support provided by the Commonwealth of Pennsylvania through the Ben Franklin Technology Development Authority of the Department of Community and Economic Development.

During the next six years, the Penn State MRSEC will continue its research in four areas – nanoscale motors, nanowires, optical metamaterials, and multiferroics – and will support a range of seed projects in organic solar cells, fuel cells, and novel electronic materials. “Our focus is on basic science and engineering research,” says Mallouk. “In each project, there are interesting possibilities for practical applications, some in the near term and some longer term. Some of the long-term ideas are remotely powered micro-scalpels for minimally invasive surgery, nanowire transistors that compute using the spin of electrons instead of their charge, hybrid optical-electronic circuits, perfect lenses, plastic solar cells, and magnetic memories that are fully integrated into silicon chips.” MRSEC research has already led to new commercial reagents for nanoscale lithography and to new kinds of optical filters, optical fibers, and light-trapping solar cells.

The Materials Research Institute promotes the interests of more than 200 materials faculty at Penn State. The Millennium Science Complex, a new facility for materials and life sciences beginning construction this fall, will foster collaborations in the developing convergence of materials and biomedical engineering.

Tom Mallouk | Newswise Science News
Further information:
http://www.psu.edu
http://www.mrsec.psu.edu/
http://www.mri.psu.edu/

Further reports about: Development MRSEC NSF materials research nanoscale solar cells

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>