Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn State Receives $13.2M for Nanoscale Science Center

02.10.2008
The National Science Foundation (NSF) has awarded Penn State University $13.2 million over six years to continue the research and educational activities of its Center for Nanoscale Science, a Materials Research Science and Engineering Center (MRSEC).

“The goal of the Center is to design and create new materials with unprecedented properties and functions, starting with nanometer-scale building blocks,” says Thomas Mallouk, DuPont Professor of Materials Chemistry and Physics at Penn State and Director of the MRSEC.

Nationally, there are 27 such centers supported by NSF, each with a different technical focus. Universities compete for MRSEC funding every three years. In the current competition, Penn State and 13 other universities were selected for funding from among 100 universities that had submitted proposals.

“Penn State has a long history of excellence in materials research.” Mallouk says. “With over 200 faculty who are active in the field, Penn State has the depth of expertise and the outstanding facilities that are needed to make headway on a range of important problems. In this Center, we do not work on problems that could be solved by one or two of us. We go after the big ones that really require an interdisciplinary team with complementary skills.”

The Penn State MRSEC involves 42 faculty and over 50 students from eleven academic departments and institutes at Penn State, as well as collaborators from six other universities. The research of the faculty and students is integrated with a broad educational outreach program that involves the Franklin Institute, a science museum in Philadelphia. MRSEC researchers have collaborations with several national laboratories and also extensive international collaborations. The MRSEC is also affiliated with companies that are seeking to commercialize the results of the Center’s research. An essential component of MRSEC projects, especially those that translate to nanotechnology and energy technologies, has been ongoing support provided by the Commonwealth of Pennsylvania through the Ben Franklin Technology Development Authority of the Department of Community and Economic Development.

During the next six years, the Penn State MRSEC will continue its research in four areas – nanoscale motors, nanowires, optical metamaterials, and multiferroics – and will support a range of seed projects in organic solar cells, fuel cells, and novel electronic materials. “Our focus is on basic science and engineering research,” says Mallouk. “In each project, there are interesting possibilities for practical applications, some in the near term and some longer term. Some of the long-term ideas are remotely powered micro-scalpels for minimally invasive surgery, nanowire transistors that compute using the spin of electrons instead of their charge, hybrid optical-electronic circuits, perfect lenses, plastic solar cells, and magnetic memories that are fully integrated into silicon chips.” MRSEC research has already led to new commercial reagents for nanoscale lithography and to new kinds of optical filters, optical fibers, and light-trapping solar cells.

The Materials Research Institute promotes the interests of more than 200 materials faculty at Penn State. The Millennium Science Complex, a new facility for materials and life sciences beginning construction this fall, will foster collaborations in the developing convergence of materials and biomedical engineering.

Tom Mallouk | Newswise Science News
Further information:
http://www.psu.edu
http://www.mrsec.psu.edu/
http://www.mri.psu.edu/

Further reports about: Development MRSEC NSF materials research nanoscale solar cells

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>