Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Science: Research data for everyone

27.05.2014

Magdeburg brain researchers publish the most comprehensive raw data set of natural language processing in the brain. It is freely accessible for interested researchers and the public—hereby allowing broad interdisciplinary collaborations.

Are there researchers who voluntarily share their complete, raw data sets online before even having evaluated the data themselves?


The 7-Tesla MRI scanner at the Leibniz Institute for Neurobiology, which the researchers have used to collect their data.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler


In favor of open science: Michael Hanke (left). His group members Falko Kaule (co-author of the publication, middle) and Alexander Waite stand next to him.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler

Until some time ago, this was unthinkable. Even today, many scientists shy away from permissive data sharing before their results are published—helping strengthen their professional reputation. Magdeburg psychologist Professor Michael Hanke from the Otto von Guericke University Magdeburg has now embarked on a different route altogether with Dr. Jörg Stadler from the Leibniz Institute for Neurobiology and colleagues.

They will publish the most comprehensive set of raw brain imaging data on natural language processing in the inaugural issue of the new open-access journal Scientific Data of the Nature Publishing Group. It is already freely available for analyses from the website http://www.studyforrest.org.

"We have received funds from the Federal Ministry of Education and Research to collect data. Now we see it as our duty to maximize the impact from this research for society," Hanke explains, whose project was funded in the framework of a German-US-American Collaboration within the Bernstein Network of Computational Neuroscience. The brain researchers will now receive professional acknowledgements through citations of their data article.

This open science approach has the advantage of accelerating progress in science. Competing research labs can simultaneously work on a subject without obstructing other scientists’ research plans through delaying the publication of data sets. Also, when scientists are asked to share data, they do not need to laboriously reconstruct past data collections—some inquirires are made years after the first publication—since the raw data have already been prepared for sharing. This saves time and cost, which can be used to further scientific developments.

The published Magdeburg data set focuses on the processing of acoustic stimuli. In the study, participants listened to an audio movie of the classic feature film Forrest Gump. Meanwhile, their brain activity was measured using functional magnetic resonance imaging (fMRI) as it processed language, music, emotions, memories, and visual imagery. Thus, the recordings do not isolate a single aspect of brain function, but instead reflect the real complexity of information flow in everyday listening experiences. In addition to the fMRI data, the scientists provide comprehensive anatomical descriptions of the participants' brains, as well as measurements on breathing and heartbeat. These help indicate the portions of the film when the listener was more excited or relaxed.

With these data, it is possible to study emotion processing during listening experiences—or analyze completely different research questions. Besides Hanke, at least two other research groups in England and Australia are currently evaluating this data. He does not know their specific lines of inquiry, however, there is one thing he is positive about: “professionals from other disciplines—such as engineers—have a very different approach to our data while also possessing the required skills to optimally analyze them for their own use." In order to promote such inter-disciplinary research the Magdeburg Center for Behavioral Brain Sciences has sponsored an award of 5000 EUR for the best use of the published data set.

The German-US-American Collaboration “Development of general high-dimenstional models of neuronal representation space” is an international research project in which scientists at Otto von Guericke University Magdeburg, Dartmouth College (USA), and Princeton University (USA) are involved. It is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Jun.-Prof. Dr. Michael Hanke
Otto von Guericke University
Institute of Psychology II
39106 Magdeburg
Tel: +49 (0)391 67-18481
Email: michael.hanke@ovgu.de

Original publication:
M. Hanke, F. J. Baumgartner, P. Ibe, F. R. Kaule, S. Pollmann, O. Speck, W. Zinke & J. Stadler (2014): A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1: 140003.
DOI: 10.1038/sdata.2014.3

Weitere Informationen:

http://www.psychoinformatics.de Michael Hanke’s „Psychoinformatics“ Lab
http://www.uni-magdeburg.de Otto von Guericke University Magdeburg
http://www.lin-magdeburg.de Leibniz Institute for Neurobiology
http://www.cbbs.eu Center for Behavioral Brain Sciences, Magdeburg
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Brain Computational Education Neurobiology Neuroscience fMRI processing publication

More articles from Science Education:

nachricht A Finger on the Pulse of Innovation – Worldwide
09.12.2015 | Siemens AG

nachricht Discovering Customers’ Hidden Needs
15.07.2015 | Siemens AG

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>