Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Science: Research data for everyone

27.05.2014

Magdeburg brain researchers publish the most comprehensive raw data set of natural language processing in the brain. It is freely accessible for interested researchers and the public—hereby allowing broad interdisciplinary collaborations.

Are there researchers who voluntarily share their complete, raw data sets online before even having evaluated the data themselves?


The 7-Tesla MRI scanner at the Leibniz Institute for Neurobiology, which the researchers have used to collect their data.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler


In favor of open science: Michael Hanke (left). His group members Falko Kaule (co-author of the publication, middle) and Alexander Waite stand next to him.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler

Until some time ago, this was unthinkable. Even today, many scientists shy away from permissive data sharing before their results are published—helping strengthen their professional reputation. Magdeburg psychologist Professor Michael Hanke from the Otto von Guericke University Magdeburg has now embarked on a different route altogether with Dr. Jörg Stadler from the Leibniz Institute for Neurobiology and colleagues.

They will publish the most comprehensive set of raw brain imaging data on natural language processing in the inaugural issue of the new open-access journal Scientific Data of the Nature Publishing Group. It is already freely available for analyses from the website http://www.studyforrest.org.

"We have received funds from the Federal Ministry of Education and Research to collect data. Now we see it as our duty to maximize the impact from this research for society," Hanke explains, whose project was funded in the framework of a German-US-American Collaboration within the Bernstein Network of Computational Neuroscience. The brain researchers will now receive professional acknowledgements through citations of their data article.

This open science approach has the advantage of accelerating progress in science. Competing research labs can simultaneously work on a subject without obstructing other scientists’ research plans through delaying the publication of data sets. Also, when scientists are asked to share data, they do not need to laboriously reconstruct past data collections—some inquirires are made years after the first publication—since the raw data have already been prepared for sharing. This saves time and cost, which can be used to further scientific developments.

The published Magdeburg data set focuses on the processing of acoustic stimuli. In the study, participants listened to an audio movie of the classic feature film Forrest Gump. Meanwhile, their brain activity was measured using functional magnetic resonance imaging (fMRI) as it processed language, music, emotions, memories, and visual imagery. Thus, the recordings do not isolate a single aspect of brain function, but instead reflect the real complexity of information flow in everyday listening experiences. In addition to the fMRI data, the scientists provide comprehensive anatomical descriptions of the participants' brains, as well as measurements on breathing and heartbeat. These help indicate the portions of the film when the listener was more excited or relaxed.

With these data, it is possible to study emotion processing during listening experiences—or analyze completely different research questions. Besides Hanke, at least two other research groups in England and Australia are currently evaluating this data. He does not know their specific lines of inquiry, however, there is one thing he is positive about: “professionals from other disciplines—such as engineers—have a very different approach to our data while also possessing the required skills to optimally analyze them for their own use." In order to promote such inter-disciplinary research the Magdeburg Center for Behavioral Brain Sciences has sponsored an award of 5000 EUR for the best use of the published data set.

The German-US-American Collaboration “Development of general high-dimenstional models of neuronal representation space” is an international research project in which scientists at Otto von Guericke University Magdeburg, Dartmouth College (USA), and Princeton University (USA) are involved. It is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Jun.-Prof. Dr. Michael Hanke
Otto von Guericke University
Institute of Psychology II
39106 Magdeburg
Tel: +49 (0)391 67-18481
Email: michael.hanke@ovgu.de

Original publication:
M. Hanke, F. J. Baumgartner, P. Ibe, F. R. Kaule, S. Pollmann, O. Speck, W. Zinke & J. Stadler (2014): A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1: 140003.
DOI: 10.1038/sdata.2014.3

Weitere Informationen:

http://www.psychoinformatics.de Michael Hanke’s „Psychoinformatics“ Lab
http://www.uni-magdeburg.de Otto von Guericke University Magdeburg
http://www.lin-magdeburg.de Leibniz Institute for Neurobiology
http://www.cbbs.eu Center for Behavioral Brain Sciences, Magdeburg
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Brain Computational Education Neurobiology Neuroscience fMRI processing publication

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>