Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Science: Research data for everyone

27.05.2014

Magdeburg brain researchers publish the most comprehensive raw data set of natural language processing in the brain. It is freely accessible for interested researchers and the public—hereby allowing broad interdisciplinary collaborations.

Are there researchers who voluntarily share their complete, raw data sets online before even having evaluated the data themselves?


The 7-Tesla MRI scanner at the Leibniz Institute for Neurobiology, which the researchers have used to collect their data.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler


In favor of open science: Michael Hanke (left). His group members Falko Kaule (co-author of the publication, middle) and Alexander Waite stand next to him.

Center for Behavioral Brain Sciences, OVGU Magdeburg / Photo: D. Mahler

Until some time ago, this was unthinkable. Even today, many scientists shy away from permissive data sharing before their results are published—helping strengthen their professional reputation. Magdeburg psychologist Professor Michael Hanke from the Otto von Guericke University Magdeburg has now embarked on a different route altogether with Dr. Jörg Stadler from the Leibniz Institute for Neurobiology and colleagues.

They will publish the most comprehensive set of raw brain imaging data on natural language processing in the inaugural issue of the new open-access journal Scientific Data of the Nature Publishing Group. It is already freely available for analyses from the website http://www.studyforrest.org.

"We have received funds from the Federal Ministry of Education and Research to collect data. Now we see it as our duty to maximize the impact from this research for society," Hanke explains, whose project was funded in the framework of a German-US-American Collaboration within the Bernstein Network of Computational Neuroscience. The brain researchers will now receive professional acknowledgements through citations of their data article.

This open science approach has the advantage of accelerating progress in science. Competing research labs can simultaneously work on a subject without obstructing other scientists’ research plans through delaying the publication of data sets. Also, when scientists are asked to share data, they do not need to laboriously reconstruct past data collections—some inquirires are made years after the first publication—since the raw data have already been prepared for sharing. This saves time and cost, which can be used to further scientific developments.

The published Magdeburg data set focuses on the processing of acoustic stimuli. In the study, participants listened to an audio movie of the classic feature film Forrest Gump. Meanwhile, their brain activity was measured using functional magnetic resonance imaging (fMRI) as it processed language, music, emotions, memories, and visual imagery. Thus, the recordings do not isolate a single aspect of brain function, but instead reflect the real complexity of information flow in everyday listening experiences. In addition to the fMRI data, the scientists provide comprehensive anatomical descriptions of the participants' brains, as well as measurements on breathing and heartbeat. These help indicate the portions of the film when the listener was more excited or relaxed.

With these data, it is possible to study emotion processing during listening experiences—or analyze completely different research questions. Besides Hanke, at least two other research groups in England and Australia are currently evaluating this data. He does not know their specific lines of inquiry, however, there is one thing he is positive about: “professionals from other disciplines—such as engineers—have a very different approach to our data while also possessing the required skills to optimally analyze them for their own use." In order to promote such inter-disciplinary research the Magdeburg Center for Behavioral Brain Sciences has sponsored an award of 5000 EUR for the best use of the published data set.

The German-US-American Collaboration “Development of general high-dimenstional models of neuronal representation space” is an international research project in which scientists at Otto von Guericke University Magdeburg, Dartmouth College (USA), and Princeton University (USA) are involved. It is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Jun.-Prof. Dr. Michael Hanke
Otto von Guericke University
Institute of Psychology II
39106 Magdeburg
Tel: +49 (0)391 67-18481
Email: michael.hanke@ovgu.de

Original publication:
M. Hanke, F. J. Baumgartner, P. Ibe, F. R. Kaule, S. Pollmann, O. Speck, W. Zinke & J. Stadler (2014): A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1: 140003.
DOI: 10.1038/sdata.2014.3

Weitere Informationen:

http://www.psychoinformatics.de Michael Hanke’s „Psychoinformatics“ Lab
http://www.uni-magdeburg.de Otto von Guericke University Magdeburg
http://www.lin-magdeburg.de Leibniz Institute for Neurobiology
http://www.cbbs.eu Center for Behavioral Brain Sciences, Magdeburg
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Brain Computational Education Neurobiology Neuroscience fMRI processing publication

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>