Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Musical duets lock brains as well as rhythms

29.11.2012
Study shows networking properties between brains when guitarists play together
Researchers from the Max Planck Institute for Human Development in Berlin have shown that synchronization emerges between brains when making music together, and even when musicians play different voices. In a study published November 29th in Frontiers in Neuroscience, Johanna Sänger and her team used electrodes to record the brain waves of guitarists while they played different voices of the same duet. The results point to brain synchronicity that cannot be explained away by similitudes in external stimulation but can be attributed to a more profound interpersonal coordination.

Scientists working with Ulman Lindenberger at the Max Planck Institute in Berlin already discovered synchronous brain activity between musicians playing the same piece in 2009. The current study goes one step further by examining the brain activity of guitar players performing a piece of music with two different parts. Their aim was to find out whether musicians' brains would synchronize if the two guitarists were not playing exactly the same notes, but instead played different voices of the same song.

To test their hypothesis, the psychologists arranged 32 experienced guitarists in duet pairs, and recorded electrical activity in different brain regions of each musician. They were then asked to play a sequence from the "Sonata in G Major" by Christian Gottlieb Scheidler a total of 60 times, and the duet partners were given slightly different tasks: each musician had to play a different voice, and one of the two was responsible for ensuring that they started at the same time and held the same tempo. Thus, one person took the lead and the other followed.

The duet's brain activities showed coordinated brain oscillations, even when playing different voices of the same duet. Called phase coherence, this synchronous activity suggests a direct neural basis for interpersonal coordination.

"When people coordinate their own actions, small networks between brain regions are formed. But we also observed similar network properties between the brains of the individual players, especially when mutual coordination is very important; for example at the joint onset of a piece of music," says Johanna Sänger. The difference between leader and follower was also reflected in the results of the measurement of electrical activity captured by electrodes: "In the player taking the lead, the internal synchronization of an individual's brain waves was stronger and, importantly, was present already before the duet started to play," says Johanna Sänger. "This could be a reflection of the leading player's decision to begin playing at a certain moment in time," she added.

The current data indicate that synchronization between individuals occurs in brain regions associated with social cognition and music production. And such interbrain networks are expected to occur not only while performing music. "We think that different people's brain waves also synchronise when people mutually coordinate their actions in other ways, such as during sport, or when they communicate with one another," Sänger says.

Original study:
Johanna Sänger, Viktor Müller and Ulman Lindenberger:
Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 2012, doi: 10.3389/fnhum.2012.00312

http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2012.00312/abstract
Related article (previous study):
Gehirne im Gleichtakt [Brains in Sync] http://www.mpg.de/577608/pressemitteilung20090317?filter_order=L

Johanna Sänger | EurekAlert!
Further information:
http://www.mpib-berlin.mpg.de

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>