Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories of Errors Foster Faster Learning

15.08.2014

Using a deceptively simple set of experiments, researchers at Johns Hopkins have learned why people learn an identical or similar task faster the second, third and subsequent time around. The reason: They are aided not only by memories of how to perform the task, but also by memories of the errors made the first time.

“In learning a new motor task, there appear to be two processes happening at once,” says Reza Shadmehr, Ph.D., a professor in the Department of Biomedical Engineering at the Johns Hopkins University School of Medicine. “One is the learning of the motor commands in the task, and the other is critiquing the learning, much the way a ‘coach’ behaves. Learning the next similar task goes faster, because the coach knows which errors are most worthy of attention. In effect, this second process leaves a memory of the errors that were experienced during the training, so the re-experience of those errors makes the learning go faster.”


Credit: Johns Hopkins Medicine

Caption: The experimental setup: Volunteers cannot see their hands, but they can see a dot of light that reflects their movements more or less accurately.

Shadmehr says scientists who study motor control — how the brain pilots body movement — have long known that as people perform a task, like opening a door, their brains note small differences between how they expected the door to move and how it actually moved, and they use this information to perform the task more smoothly next time. Those small differences are scientifically termed “prediction errors,” and the process of learning from them is largely unconscious.

The surprise finding in the current study, described in Science Express on Aug. 14, is that not only do such errors train the brain to better perform a specific task, but they also teach it how to learn faster from errors, even when those errors are encountered in a completely different task. In this way, the brain can generalize from one task to another by keeping a memory of the errors.

To study errors and learning, Shadmehr’s team put volunteers in front of a joystick that was under a screen. Volunteers couldn’t see the joystick, but it was represented on the screen as a blue dot. A target was represented by a red dot, and as volunteers moved the joystick toward it, the blue dot could be programmed to move slightly off-kilter from where they pointed it, creating an error. Participants then adjusted their movement to compensate for the off-kilter movement and, after a few more trials, smoothly guided the joystick to its target.

In the study, the movement of the blue dot was rotated to the left or the right by larger or smaller amounts until it was a full 30 degrees off from the joystick’s movement. The research team found that volunteers responded more quickly to smaller errors that pushed them consistently in one direction and less to larger errors and those that went in the opposite direction of other feedback. “They learned to give the frequent errors more weight as learning cues, while discounting those that seemed like flukes,” says David Herzfeld, a graduate student in Shadmehr’s laboratory who led the study.

The results also have given Shadmehr a new perspective on his after-work tennis hobby. “I’m much better in my second five minutes of playing tennis than in my first five minutes, and I always assumed that was because my muscles had warmed up,” he says. “But now I wonder if warming up is really a chance for our brains to re-experience error.”

“This study represents a significant step toward understanding how we learn a motor skill,” says Daofen Chen, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke. “The results may improve movement rehabilitation strategies for the many who have suffered strokes and other neuromotor injuries.”

The next step in the research, Shadmehr says, will be to find out which part of the brain is responsible for the “coaching” job of assigning weight to different types of error.

Other authors on the paper were Pavan A. Vaswani and Mollie K. Marko of the Johns Hopkins University School of Medicine.

This work was supported by the National Institute of Biomedical Imaging and Bioengineering (grant number T32EB003383), the National Institute of General Medical Sciences (grant number T32GM007057) and the National Institute of Neurological Disorders and Stroke (grant numbers R01NS078311 and F31NS079121).

Shawna Williams | newswise
Further information:
http://www.jhmi.edu

Further reports about: Biomedical Hopkins Learning Medicine Volunteers differences errors movement muscles perform smaller weight

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>