Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Majority-biased learning

13.04.2012
In humans and chimpanzees knowledge is transmitted within a group by means of a majority principle

The transmission of knowledge to the next generation is a key feature of human evolution. In particular, humans tend to copy behaviour that is demonstrated by many other individuals. Chimpanzees and orangutans, two of our closest living relatives, also socially pass on traditional behaviour and culture from one generation to another. Whether and how this process resembles the human one is still largely unknown.

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig and the Max Planck Institute for Psycholinguistics in Nijmegen have now discovered that chimpanzees are more likely to copy an action performed by a large number of individuals than an action that was performed more frequently. Two-year old children consider both the number of individuals and the frequency of the action demonstrated. For orangutans, however, none of the factors play a role.

In many animal species, behaviours and strategies are passed on from individuals to their conspecifics and potentially across groups by social learning. In chimpanzees and orangutans, whose behavioural repertoires differ from population to population, knowledge is also "transmitted" amongst individuals. In their current paper, researchers Daniel Haun, Yvonne Rekers and Michael Tomasello of the Max Planck Institutes for Evolutionary Anthropology and Psycholinguistics show how human children and chimpanzees pass on knowledge through social learning.

Initially, the researchers wanted to find out whether children and apes are more likely to copy a behaviour that has been demonstrated more often or one that has been demonstrated by more individuals. In the relevant experimental setting, 2-year-old children, chimpanzees and orangutans could receive a reward from an apparatus consisting of three differently coloured subsections if they dropped a ball into a hole. Four individuals then demonstrated an action: One individual dropped a ball into the same section three times; the three others – one after the other - dropped their balls into another section. Finally, the observers were also asked to drop a ball into one of the three sections. The result: Most of the chimpanzees and 16 children chose the section that the majority of individuals had also chosen. Orangutans appeared to select a section quite randomly.

In the second part of the study, the researchers analysed whether the frequency with which a subsection was chosen by the demonstrators had an influence on the result. The set-up was similar to the previous test, with one exception: now it was only two children, chimpanzees or orangutans who demonstrated an action. One individual dropped three balls into one of the coloured subsections and for doing this received one reward per ball. The second demonstrator dropped one ball in a differently coloured section and received one award. The result: Chimpanzees and orangutans seemed to choose randomly whereas most of the children chose the subsection into which more balls had been dropped.

"Taking the results of the two studies together, chimpanzees seemed to consider the number of demonstrators more strongly than the number of demonstrations when deciding which information to extract from their social environment. Children considered both. Orangutans considered neither", says Daniel Haun. Interestingly, children and chimpanzees copied the majority behaviour while orangutans did not. One possible explanation: Contrary to humans and chimpanzees, orangutans live together in lose group structures. Social learning beyond the mother-child-relationship might therefore not play an equally important role.

Original paper:

Daniel B.M. Haun, Yvonne Rekers, Michael Tomasello Majority-Biased Transmission in Chimpanzees and Human Children, but Not Orangutans. Current Biology (2012), doi:10.1016/j.cub.2012.03.006

Dr. Daniel Haun | EurekAlert!
Further information:
http://www.eva.mpg.de

More articles from Science Education:

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>