Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IRB Barcelona to coordinate two European projects on biomedicine

The Institute for Research in Biomedicine (IRB Barcelona) has been chosen by the European Commission (EC) to coordinate two European health research projects, as part of the second call of the VII Framework Programme.

This concession makes IRB Barcelona a leader in European projects in Spain, together with the Spanish National Research Council. In all, Spanish centres will be heading ten projects. The EC will grant IRB Barcelona funding of more than 5 million euros from 2009 to 2011. Malaria and diabetes will be the topics addressed by the consortia headed by the researchers Lluís Ribas de Pouplana and Antonio Zorzano.


The consortium coordinated by Lluís Ribas de Pouplana, ICREA researcher and head of the Gene Translation Laboratory at IRB Barcelona, will explore a promising line of investigation to find new anti-malarial compounds. The project, called Mephitis, is included in the call “Projects for diseases of the Third World in collaboration with laboratories in India”. Malaria is caused by the parasite Plasmodium falciparum, which is carried by some female Anopheles mosquitoes. Infection is via a mosquito bite, which introduces the parasite into our bodies, where it attacks red blood cells. At present, between 300 and 500 million infections are reported worldwide each year and more than a million people die from malaria every year, mainly children in Africa and Asia.

The project seeks to elucidate the formation of proteins in the parasite that are involved the transmission of malaria, with the aim to identify the key components that inhibit this process and allow the development of anti-malarial drugs. The rationale behind Ribas de Pouplana’s project is that "we now have enough knowledge about protein synthesis in organisms such as the bacteria E.coli or the yeast Saccharomyces cerevisiae, and we now want to transfer this knowledge base to organisms of medical relevance such as Plasmodium". This new strategy will provide crucial information to "fight effectively against the parasite".

Ribas has brought together experts from several fields: Plasmodium biology, protein synthesis processes, and advanced tools used in crystallography, bioinformatics, genome dynamics, transcriptomics and proteomics. The Combinatorial Chemistry Programme of the Barcelona Science Park, the centre that hosts IRB Barcelona, is managed by the researcher Miriam Royo and is one of the eight laboratories included in the consortium. In addition to the two groups in Barcelona, there are two from India, one from France, one from Italy, one from Portugal and one from Australia.


Antonio Zorzano, head of the Molecular Medicine Programme at IRB Barcelona and senior professor at the University of Barcelona, will coordinate a pioneering project to fight against diabetes, a disease described as the epidemic of the XXI century. The MITIN Project is innovative because it will be the first time that bioinformatics is applied to obtain information about complex diseases such as diabetes, which is the result of a combination of environmental and genetic factors. "Systems biology", explains Zorzano, "can hold and integrate many data about a single disease and can reveal the existence of gene networks and interactions between proteins that are responsible for the key alterations in a disease".

The six groups that comprise the consortia seek to identify the processes that occur in mitochrondria – an intracellular organelle that transforms molecules from the food we ingest into energy -, and that are responsible for insulin resistance. Insulin is a hormone generated by the pancreas and serves to allow glucose to enter cells. People who suffer from the so-called Insulin Resistance Syndrome generally present high levels of triglycerides (fats) in blood and low levels of healthy cholesterol. Furthermore, hypertension and obesity may be behind insulin resistance. This metabolic disorder increases the risk of suffering from diabetes and coronary disease.

To develop the project, Zorzano is supported by two expert groups in systems biology. One is from the Barcelona Supercomputing Center, a facility that hosts the MareNostrum supercomputer, one of the most powerful in the world. This group will work on designing a computational programme that includes experimental data. The second group, from Finland, has expertise in the technique called lipidomics, which allows the determination of fat composition in body tissues and fluids. The four remaining laboratories, two in England, one in Germany and Zorzano’s own lab, will apply their experience to the study of insulin resistance and diabetes in two animal models, the mouse and the fruit fly (Drosophila melanogaster), and to the manipulation of individual mammalian cells. "We will work at distinct levels of complexity and with two animal models to discover whether systems biology is a suitable approach to answer questions related to complex diseases. It is a huge challenge and if we obtain positive results, systems biology will become a key technique in future research into these types of disease", explains the project’s coordinator.

Sònia Armengou | alfa
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>