Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IRB Barcelona to coordinate two European projects on biomedicine

23.12.2008
The Institute for Research in Biomedicine (IRB Barcelona) has been chosen by the European Commission (EC) to coordinate two European health research projects, as part of the second call of the VII Framework Programme.

This concession makes IRB Barcelona a leader in European projects in Spain, together with the Spanish National Research Council. In all, Spanish centres will be heading ten projects. The EC will grant IRB Barcelona funding of more than 5 million euros from 2009 to 2011. Malaria and diabetes will be the topics addressed by the consortia headed by the researchers Lluís Ribas de Pouplana and Antonio Zorzano.

DISARMING THE PARASITE THAT CAUSES MALARIA

The consortium coordinated by Lluís Ribas de Pouplana, ICREA researcher and head of the Gene Translation Laboratory at IRB Barcelona, will explore a promising line of investigation to find new anti-malarial compounds. The project, called Mephitis, is included in the call “Projects for diseases of the Third World in collaboration with laboratories in India”. Malaria is caused by the parasite Plasmodium falciparum, which is carried by some female Anopheles mosquitoes. Infection is via a mosquito bite, which introduces the parasite into our bodies, where it attacks red blood cells. At present, between 300 and 500 million infections are reported worldwide each year and more than a million people die from malaria every year, mainly children in Africa and Asia.

The project seeks to elucidate the formation of proteins in the parasite that are involved the transmission of malaria, with the aim to identify the key components that inhibit this process and allow the development of anti-malarial drugs. The rationale behind Ribas de Pouplana’s project is that "we now have enough knowledge about protein synthesis in organisms such as the bacteria E.coli or the yeast Saccharomyces cerevisiae, and we now want to transfer this knowledge base to organisms of medical relevance such as Plasmodium". This new strategy will provide crucial information to "fight effectively against the parasite".

Ribas has brought together experts from several fields: Plasmodium biology, protein synthesis processes, and advanced tools used in crystallography, bioinformatics, genome dynamics, transcriptomics and proteomics. The Combinatorial Chemistry Programme of the Barcelona Science Park, the centre that hosts IRB Barcelona, is managed by the researcher Miriam Royo and is one of the eight laboratories included in the consortium. In addition to the two groups in Barcelona, there are two from India, one from France, one from Italy, one from Portugal and one from Australia.

BIOINFORMATICS AND MOLECULAR MEDICINE, UNITED AGAINST DIABETES

Antonio Zorzano, head of the Molecular Medicine Programme at IRB Barcelona and senior professor at the University of Barcelona, will coordinate a pioneering project to fight against diabetes, a disease described as the epidemic of the XXI century. The MITIN Project is innovative because it will be the first time that bioinformatics is applied to obtain information about complex diseases such as diabetes, which is the result of a combination of environmental and genetic factors. "Systems biology", explains Zorzano, "can hold and integrate many data about a single disease and can reveal the existence of gene networks and interactions between proteins that are responsible for the key alterations in a disease".

The six groups that comprise the consortia seek to identify the processes that occur in mitochrondria – an intracellular organelle that transforms molecules from the food we ingest into energy -, and that are responsible for insulin resistance. Insulin is a hormone generated by the pancreas and serves to allow glucose to enter cells. People who suffer from the so-called Insulin Resistance Syndrome generally present high levels of triglycerides (fats) in blood and low levels of healthy cholesterol. Furthermore, hypertension and obesity may be behind insulin resistance. This metabolic disorder increases the risk of suffering from diabetes and coronary disease.

To develop the project, Zorzano is supported by two expert groups in systems biology. One is from the Barcelona Supercomputing Center, a facility that hosts the MareNostrum supercomputer, one of the most powerful in the world. This group will work on designing a computational programme that includes experimental data. The second group, from Finland, has expertise in the technique called lipidomics, which allows the determination of fat composition in body tissues and fluids. The four remaining laboratories, two in England, one in Germany and Zorzano’s own lab, will apply their experience to the study of insulin resistance and diabetes in two animal models, the mouse and the fruit fly (Drosophila melanogaster), and to the manipulation of individual mammalian cells. "We will work at distinct levels of complexity and with two animal models to discover whether systems biology is a suitable approach to answer questions related to complex diseases. It is a huge challenge and if we obtain positive results, systems biology will become a key technique in future research into these types of disease", explains the project’s coordinator.

Sònia Armengou | alfa
Further information:
http://www.irbbarcelona.org

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>