Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz supports research projects on their way to application

30.10.2014

Developing pioneering technologies and making them attractive for industry: the Helmholtz Association is channelling more than €20 million from its Initiative and Networking Fund into helping scientists quickly move their projects from research to application.

Fifteen projects have been funded since the launch in 2011, and now independent assessors have recommended that a further three should receive support: a system that can produce high-precision maps, an effective process for generating heat in solar tower power plants, and an active pharmaceutical ingredient that could be used in the treatment of ischemia in the future.

The Helmholtz Association believes these three developments have huge potential for achieving successful commercial application and making a significant contribution to society.

We could soon be in a position to measure the world more accurately, use solar energy more effectively, and take a new approach to treating the effects of ischemia, an acute arterial disorder that restricts blood flow. Even after producing successful research, many projects often lack validation, i.e. evidence that their findings are of interest to industrial partners or that they can lead to a spin-off. In its current selection round, therefore, the Helmholtz Validation Fund is supporting another three pioneering projects to help them get their results to market. The three research projects, DriveMark, CentRec and RỌScue, are receiving a combined total of some €3 million in funding.

Funding to bring research to market

The road from scientific findings to a market-ready application is long. The Validation Fund provides scientists working at Helmholtz centres with support in the form of advice and financing during this initial phase. “This instrument allows us to push application-oriented research findings far enough for them to achieve an increase in value and become commercially viable,” says Rolf Zettl, managing director of the Helmholtz Association. He explains that there are various ways of proving that a project is ready for market. These include conducting tests to demonstrate its applicability, scaling up the production process, or delivering results from pre-clinical trials. The Helmholtz Validation Fund, says Zettl, is an important instrument for enabling the transfer of highly relevant technologies.

Three very promising projects

DriveMark – A system that uses image and radar data to generate high-precision street maps and facilitate autonomous driving.
Hartmut Runge and his team from the German Aerospace Center are hoping their DriveMark system will vastly improve the way digital maps are produced. In addition to reducing the costs involved, the scientists also believe their solution will open up new possibilities for navigation that could revolutionise autonomous driving. Today, high-precision street maps that reflect the exact course of the road are considered crucial for autonomous driving, since every centimetre counts when a machine is in charge. However, producing coordinates that are accurate enough is currently an arduous task that has to be done site by site, on location and with the help of a special receiver. The DriveMark system is different in that it is highly automated and generates precise coordinates for large areas. It is based on a technology for correcting disturbances that atmospheric and environmental effects can cause to radar satellite signals.

At http://www.helmholtz.de , Runge explains why our current navigation systems are no longer suitable for the road and transport concepts of the future.

CentRec – Solar energy generation using innovative particle receiver technology.
Lars Amsbeck and his team at the German Aerospace Center are planning to develop a rotating receiver system with ceramic particles as heat carriers for use in solar tower power plants. Their aim is the commercial production of heat that can compete with liquid fuels in sunny locations.

Solar thermal power plants use a series of mirrors to concentrate direct solar radiation. The new process uses near-black ceramic particles as the energy carriers and storage media. The particles can be heated to as much as 1000°C, and a patented centrifugal receiver makes it possible to efficiently control the material flow. A simple, direct storage solution means the system can operate around the clock. The technology has particular potential in industrial settings where temperatures in excess of 400°C are needed. In these scenarios, solar energy in the form of hot air can replace expensive energy carriers such as liquid fuels or electricity. Electricity generation is another possible area of application, since the high temperatures could be used drive steam and gas turbines.

RỌScue Therapeutics – Innovative medicines for the targeted treatment of ischemia-reperfusion injuries.
Within the RỌScue Therapeutics project, Marcus Conrad and his team from Helmholtz Zentrum München are researching medicines for treating tissue damage that can occur when blood flow is restored after a period of ischemia (a condition that restricts the blood supply). Insufficient blood flow to tissues is especially common in conditions such as heart attacks and strokes, but it can also be caused by surgical interventions such as a kidney transplant. Ischemia and the subsequent restoration of the blood supply (reperfusion) can produce large quantities of reactive oxygen species (ROS), which are harmful to the human body. Although this has an enormous impact on patient health, drugs that would allow doctors to provide targeted treatment are still lacking. The active ingredient that the RỌScue Therapeutics team are investigating in pre-clinical trials could give cells greater protection against ischemia-reperfusion injuries and thus maintain tissue function. With a view to driving forward the development of this potentially valuable drug, a spin-off company and a collaboration with a pharmaceutical firm are both in the pipeline.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; and Aeronautics, Space and Transport. With 37,000 employees in 18 research centres and an annual budget of approximately €3.8 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the media:

Janine Tychsen
Deputy Head Communications and Media Relations
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Dr.-Ing. Jörn Krupa
Director Technology Transfer
Tel.: 030 206 329-72
joern.krupa@helmholtz.de


Weitere Informationen:

http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Helmholtz-Zentrum

Further reports about: Helmholtz Validation blood flow blood supply fuels ischemia particles power plants solar energy

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>