Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FIZ CHEMIE and the FU Berlin are researching into dynamically-generated learning trajectories

25.11.2010
FIZ CHEMIE and the Freie Universität Berlin are working on an e-learning education environment in which page content, learning paths and learning didactics are generated dynamically for individual users / The focus of research is the semantic indexing of the learning encyclopedia ChemgaPedia with comparisons to established chemistry ontologies / The implemented prototype user interface of a semantic learning trajectory generator will be presented at Online Educa from 1st to 3rd December in Berlin

A group of scientists from FIZ CHEMIE and the Freie Universität Berlin (FU) are researching into facilities and technologies to support future self-study on the ChemgaPedia education platform using dynamically-generated learning recommendations. The aim of the research is an e-learning education environment that suggests learning content along a didactically-structured learning path, taking into account the individual educational requirements of the user.

Richard Huber, Head of Marketing & Communication at FIZ CHEMIE and a member of the development group explained, "The system guides students in the e-learning environments just like a teacher. The suggestions will guide the student along a completely individual learning path, dynamically generated just for this person". The prototype of the ChemgaPedia Recommender will be presented in early December at the Online Educa conference exhibition in Berlin (1. - 3.12.10, Hotel InterContinental).

Dynamically-generated recommendations are known from online stores that can tell you what other buyers of the product you have just purchased also bought, and from Google when making a spelling mistake: "Did you mean…". The research team, including Alexandru-Aurelian Todor, Sebastian Krebs, Ralf Heese and Professor Adrian Paschke from the Institute of Computer Science at the FU, is using comparable technologies to develop the learning-trajectory generator for ChemgaPedia. These are described as semantic-data and linked-data technologies.

The conditions required for being able to generate useful personalized recommendations are differentiated user data on the one hand and suitable specialist ontologies on the other. Ontologies transform human knowledge, contexts and specialist dependencies into a special, machine-processable format. The RDF schema used for ChemgaPedia allows specialized software to recognize relationships between information, and thus can capture contexts for the computer.

The developers of the learning-path generator for ChemgaPedia are semantically preparing the metadata of the ChemgaPedia learning units, their complete texts, data from user monitoring, as well as links and chemical entities in order to build the necessary ontologies, and these are then compared with existing chemistry ontologies. A user interface has been built upon this extensive network of connected information, which provides the student with expanded recommendations on the subject and learning suggestions through the linking that already exists in ChemgaPedia.

The suggested learning steps and learning paths are derived from the subject currently being worked on and user behavior, as well as a comparison and analysis of the content of existing specialist chemistry ontologies (DB-Pedia, PubChem and similar), without the respective user and his/her personal profile being known. However, in the future a facility should also be provided for generating personalized learning paths that suit individual levels of education, such as the syllabus for the third semester. In order to be able to technically map this function, personal details on prior knowledge, field of study, term and similar facts are required. The scientists hope to be able to collect this data in future on a voluntary basis. In this way, the learning path generator for e-learning environments could be further developed to become a personal learning assistant.

With 18,000 pages, 25,000 media objects and 350,000 users per month, ChemgaPedia is the most extensive and most used scientific education platform in the German-speaking area. It can be used without the need for personal registration. The learning contents cover the complete bandwidth of specialist chemical knowledge needed when studying for a Bachelor´s degree; related subjects from pharmaceutics and life sciences are also included.

For additional Information

FIZ CHEMIE
P.O. BOX 12 03 37
10593 Berlin, Germany
http://awww.chemistry.de
E-mail: info@fiz-chemie.de
Richard Huber
Phone: +49 (0)30 / 39977-217
E-mail: huber@fiz-chemie.de
About FIZ CHEMIE
FIZ CHEMIE is a non-profit organization supported by the German federal and state governments with the primary task of providing those in science, education and industry with high-quality information services for general chemistry, chemical technology and related fields. The organization is certified according to the DIN EN ISO 9001:2008 quality standard. FIZ CHEMIE maintains relationships with research and information institutes in Germany and abroad and has marketing agreements with partner organizations around the world. The technical information center is committed to the advancement and integration of technical information for chemistry at national and international levels. FIZ CHEMIE is an institute for the scientific infrastructure in the Leibniz Scientific Community (Leibnizgemeinschaft WGL)

All statements in this press release which are not of a historical character refer to the future in the sense of U.S. security law. The predictive statements are assumptions which are based on the current state of information and consequently are subject to particular uncertainty factors. Events which actually occur can deviate considerably from those predicted due to many factors, for example as a result of changes in technology, product development or production, market acceptance, costs or prices for products of FIZ CHEMIE and dependence on alliances and partners, approval processes, competition, intellectual property or patent protection and copyrights

Vanessa Vogt-Herrmann | idw
Further information:
http://www.chemistry.de

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>