Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European cooperation towards the Geological Disposal of Radioactive Waste

20.10.2008
While decisions on the use of nuclear energy are the responsibility of individual Member States, the safe management of resulting nuclear waste is a matter of concern for all European Union citizens.

The Euratom Framework Programme has supported research in this field for many years and this is continuing in the current 7 th Framework Programme. Today over 300 representatives of the research community, implementing organisations, regulatory authorities and decision makers meet at the EU organized conference Euradwaste ' 08 in Luxembourg. During the 7 th Conference on the Management and Disposal of Radioactive Waste they discuss until Wednesday the latest findings in their field and possibilities for further cooperation.

Euradwaste'08 is a showcase event for the results of the Sixth Euratom Framework Programme (FP6, 2002-2006). The long-term safe management of high-level radioactive waste, such as spent nuclear fuel and the vitrified residues from reprocessing of this fuel, is a major challenge for the nuclear sector. Every year some 280 m 3 of high-level vitrified waste and 3600 tonnes of spent nuclear fuel are produced in the EU. Geological disposal is the disposal in engineered repositories situated at depth in suitable geological formations, where the geological conditions will contribute to the long-term isolation and containment of long-lived radionuclides. Potential host rocks include granite, clay and salt formations.

Within the Euratom FP6 CARD project, (www.cardproject.eu) the major national radioactive waste management organisations of ten European States (Belgium, Czech Republic, Finland, France, Germany, Slovenia, Spain, Sweden, Switzerland and United Kingdom) reaffirmed their interest in enhancing cooperation in the remaining R&D necessary during the run-up to actual implementation of geological repositories. This must be coordinated with the on-going efforts in a number of European research centres and Technical Safety Organisations. Together, this will enable all R&D stakeholders to address better common research goals and optimise resources. At the conference, the basis will be laid for a common vision for future R&D in this field, leading to the elaboration by the key stakeholders of a Strategic Research Agenda and Deployment Strategy. Implementation of geological disposal is likely to take place in at least three Member States by 2025. The Swedish and Finnish radioactive waste management companies are piloting the current work and coordinating the drafting of the collective vision. It is hoped that the European Technological Platform will be formally launched in summer 2009.

Background

Under FP6, the European Commission invested some 90 million Euros in R&D on radioactive waste, half of it on geological disposal, the other half on techniques to minimise waste volumes and radiotoxicity. This support, provided typically through large multi-partner collaborative projects looking to integrate the research effort on key aspects of the disposal system, follows that in previous Framework Programmes focussed on investigation and demonstration of basic phenomena. This Euratom support has helped established a sound technical basis for the design, construction, operation and closure of geological repositories, and underpins the development of a common European view on the main issues related to the management and disposal of waste. The focus is now on implementation-oriented R&D in support of license applications, especially related to performance and safety assessment and the reduction of uncertainties. For further background on this complex technical and socio-political issue, refer to the European Commission's Sixth Situation Report on Radioactive Waste and Spent Fuel Management in the European Union :

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0542:FIN:EN:DOC

Florian Frank | alfa
Further information:
http://www.cec.eu.int
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0542:FIN:EN:DOC

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>