Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-dimensional learning: RUB scientists report in Cerebral Cortex

26.09.2011
RUB scientists report in Cerebral Cortex

Viewing two-dimensional images of the environment, as they occur in computer games, leads to sustained changes in the strength of nerve cell connections in the brain. In Cerebral Cortex, Prof. Dr. Denise Manahan-Vaughan and Anne Kemp of the RUB Department for Neurophysiology report about these findings.

When the researchers presented rats with new spatial environments on a computer screen, they observed long-lasting changes in the communication between nerve cells in a brain structure which is important for long-term memory (hippocampus). Thus, the researchers showed for the first time that active exploration of the environment is not necessary to obtain this effect.

“These results help to understand to what extent digital learning in the brain competes with learning in the physical environment”, says Manahan-Vaughan. “This is interesting for developing strategies for use of digital media in school. Such strategies can prove a useful antidote to the apathy in children towards the traditional teaching methods.”

Two mechanisms for learning in the brain

In the hippocampus, two different mechanisms for the long-term storage of new information are at work . Long-term potentiation leads to an increase in the communication between nerve cells. Long-term depression, on the other hand, weakens the connections between the cells. „According to our results, cell populations react with potentiation at the beginning, for instance when we enter a new room “, explains Manahan-Vaughan. „Long-term depression then allows us to refine this new cellular information and encode the details and characteristics of the room.“

Learning without movement

The Bochum team showed that long-term depression takes place in a special part of the hippocampus, when rats actively explore their environment. “We were, however, not sure if these changes in nerve cell communication were influenced by the movement of the animals or were purely due to learning about the novel objects”, explains Manahan-Vaughan. In order to separate both effects, the researchers presented the spatial context via a computer screen so that active exploration of the environment was unnecessary. Long-term depression occurred also without movement, meaning that it mediates passive learning in the hippocampus.

Computer and TV compete with learning in school

“School teachers, particularly at the junior school level have become increasingly concerned at their observations that each generation of school children exhibits shorter attention spans and poorer retention abilities than the previous generation“, states Manahan-Vaughan. “One explanation for this is the ever increasing use of the digital media by school children. Our results indeed show that mammals can learn equally well when they passively view information on a computer screen compared to actively exploring the environment for this information. Television or computer games after school may compete with the information learned in school.”

Bibliographic record

A. Kemp, D. Manahan-Vaughan (2011). Passive Spatial Perception Facilitates the Expression of Persistent Hippocampal Long-Term Depression, Cerebral Cortex, doi:10.1093/cercor/bhr233

Further information

Prof. Dr. Denise Manahan-Vaughan, Abteilung für Neurophysiologie, Research Department of Neuroscience, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. +49 234 32 22042

Denise.Manahan-Vaughan@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>